{"title":"Multilevel Feature Interaction Network for Remote Sensing Images Semantic Segmentation","authors":"Hongkun Chen;Huilan Luo","doi":"10.1109/JSTARS.2024.3486724","DOIUrl":null,"url":null,"abstract":"High-spatial resolution (HSR) remote sensing images present significant challenges due to their highly complex backgrounds, a large number of densely distributed small targets, and the potential for confusion with land targets. These characteristics render existing methods ineffective in accurately segmenting small targets and prone to boundary blurring. In response to these challenges, we introduce a novel multilevel feature interaction network (MFIN). The MFIN model was designed as a dual-branch U-shaped interactive decoding structure that effectively achieves semantic segmentation and edge detection. Notably, this study is the first to address ways to enhance the performance for HSR remote sensing image analysis by iteratively refining features at multilevels for different tasks. We designed the feature interaction module (FIM), which refines semantic features through multiscale attention and interacts with edge features of the same scale for optimization, then serving as input for iterative optimization in the next scale's FIM. In addition, a lightweight global feature module is designed to adaptively extract global contextual information from different scales features, thereby enhancing the semantic accuracy of the features. Furthermore, to mitigate the semantic dilution issues caused by upsampling, a semantic-guided fusion module is introduced to enhance the propagation of rich semantic information among features. The proposed methods achieve state-of-the-art segmentation performance across four publicly available remote sensing datasets: Potsdam, Vaihingen, LoveDA, and UAVid. Notably, our MFIN has only 15.4 MB parameters and 34.2 GB GFLOPs, achieving an optimal balance between accuracy and efficiency.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"19831-19852"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736554","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10736554/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
High-spatial resolution (HSR) remote sensing images present significant challenges due to their highly complex backgrounds, a large number of densely distributed small targets, and the potential for confusion with land targets. These characteristics render existing methods ineffective in accurately segmenting small targets and prone to boundary blurring. In response to these challenges, we introduce a novel multilevel feature interaction network (MFIN). The MFIN model was designed as a dual-branch U-shaped interactive decoding structure that effectively achieves semantic segmentation and edge detection. Notably, this study is the first to address ways to enhance the performance for HSR remote sensing image analysis by iteratively refining features at multilevels for different tasks. We designed the feature interaction module (FIM), which refines semantic features through multiscale attention and interacts with edge features of the same scale for optimization, then serving as input for iterative optimization in the next scale's FIM. In addition, a lightweight global feature module is designed to adaptively extract global contextual information from different scales features, thereby enhancing the semantic accuracy of the features. Furthermore, to mitigate the semantic dilution issues caused by upsampling, a semantic-guided fusion module is introduced to enhance the propagation of rich semantic information among features. The proposed methods achieve state-of-the-art segmentation performance across four publicly available remote sensing datasets: Potsdam, Vaihingen, LoveDA, and UAVid. Notably, our MFIN has only 15.4 MB parameters and 34.2 GB GFLOPs, achieving an optimal balance between accuracy and efficiency.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.