Performance Analysis of a Biologically Inspired Collective Gradient Detection Method for a Bio-Nanomachine Cluster

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS IEEE Communications Letters Pub Date : 2024-09-26 DOI:10.1109/LCOMM.2024.3469130
Mayuka Chiba;Tadashi Nakano
{"title":"Performance Analysis of a Biologically Inspired Collective Gradient Detection Method for a Bio-Nanomachine Cluster","authors":"Mayuka Chiba;Tadashi Nakano","doi":"10.1109/LCOMM.2024.3469130","DOIUrl":null,"url":null,"abstract":"In molecular communication, information can be encoded on the concentration gradient of signal molecules, making gradient detection an important issue. This letter considers a biologically inspired method for a cluster of bio-nanomachines to perform collective gradient detection. It develops a mathematical model of the collective gradient detection method, and uses the model to analyze its performance. One of the major findings reported in this letter is the existence of an optimal cluster size that can maximize the gradient detection performance. The contributions of this letter include exploring a new research direction in molecular communication, where a cluster of bio-nanomachines is used as a unit of molecular communication systems.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 11","pages":"2528-2532"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10695119/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In molecular communication, information can be encoded on the concentration gradient of signal molecules, making gradient detection an important issue. This letter considers a biologically inspired method for a cluster of bio-nanomachines to perform collective gradient detection. It develops a mathematical model of the collective gradient detection method, and uses the model to analyze its performance. One of the major findings reported in this letter is the existence of an optimal cluster size that can maximize the gradient detection performance. The contributions of this letter include exploring a new research direction in molecular communication, where a cluster of bio-nanomachines is used as a unit of molecular communication systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受生物启发的生物纳米机器集群集体梯度检测方法的性能分析
在分子通信中,信息可以编码在信号分子的浓度梯度上,因此梯度检测是一个重要问题。这封信探讨了一种受生物启发的方法,让生物纳米机器集群进行集体梯度检测。它建立了集体梯度检测方法的数学模型,并利用该模型分析了其性能。信中报告的主要发现之一是存在一个能使梯度检测性能最大化的最佳集群规模。这封信的贡献包括探索了分子通讯的一个新研究方向,即把生物纳米机器集群作为分子通讯系统的一个单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
期刊最新文献
Table of Contents IEEE Communications Letters Publication Information IEEE Communications Society Information Table of Contents IEEE Communications Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1