Contrasting interchain order and mixed ionic–electronic conduction in conjugated polymers: an isoindigo case study†

Rebecca F. Meacham, Heejung Roh, Camille E. Cunin, Eric R. Lee, Wenhao Li, Yan Zhao, Sanket Samal and Aristide Gumyusenge
{"title":"Contrasting interchain order and mixed ionic–electronic conduction in conjugated polymers: an isoindigo case study†","authors":"Rebecca F. Meacham, Heejung Roh, Camille E. Cunin, Eric R. Lee, Wenhao Li, Yan Zhao, Sanket Samal and Aristide Gumyusenge","doi":"10.1039/D4LP00272E","DOIUrl":null,"url":null,"abstract":"<p >In mixed ionic–electronic conductive polymers, electronic conduction is optimal in tightly packed flat chains, while ionic conduction benefits from free volume accommodating large ions. To this end, polymers with high crystallinity are often excluded from structure–property studies of high-performing mixed conductors due to their unbalanced transport, which favors electronic charges over ionic ones. Herein, we investigated how mixed conduction can be achieved in ordered conjugated polymers by systematically combining interchain order with side chain engineering. We synthesized a series of isoindigo (IID)-based copolymers with varying amounts of aliphatic and hydrophilic side chains and examined the impact of interchain order on mixed conduction. Through crystallographic, spectro-electrochemical, and molecular dynamics studies, we demonstrated that systematically introducing hydrophilic side chains reduces the bulk order and long-range aggregation by increasing chain flexibility while preserving the interchain stacking distances within crystalline domains. Testing these IID polymers in transistor devices revealed that ion insertion and device transconductance strongly depend on the amount of hydrophilic side chains. We demonstrated that glycol side chains can enhance mixed conduction while maintaining interchain order. Our findings suggest that the IID system is promising for designing polymers that can accommodate ionic species without compromising the chain ordering required for electronic conduction.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 6","pages":" 1193-1201"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lp/d4lp00272e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lp/d4lp00272e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In mixed ionic–electronic conductive polymers, electronic conduction is optimal in tightly packed flat chains, while ionic conduction benefits from free volume accommodating large ions. To this end, polymers with high crystallinity are often excluded from structure–property studies of high-performing mixed conductors due to their unbalanced transport, which favors electronic charges over ionic ones. Herein, we investigated how mixed conduction can be achieved in ordered conjugated polymers by systematically combining interchain order with side chain engineering. We synthesized a series of isoindigo (IID)-based copolymers with varying amounts of aliphatic and hydrophilic side chains and examined the impact of interchain order on mixed conduction. Through crystallographic, spectro-electrochemical, and molecular dynamics studies, we demonstrated that systematically introducing hydrophilic side chains reduces the bulk order and long-range aggregation by increasing chain flexibility while preserving the interchain stacking distances within crystalline domains. Testing these IID polymers in transistor devices revealed that ion insertion and device transconductance strongly depend on the amount of hydrophilic side chains. We demonstrated that glycol side chains can enhance mixed conduction while maintaining interchain order. Our findings suggest that the IID system is promising for designing polymers that can accommodate ionic species without compromising the chain ordering required for electronic conduction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共轭聚合物中的链间秩序对比和离子-电子混合传导:异靛蓝案例研究†。
在离子电子混合导电聚合物中,电子传导在紧密的扁平链中最为理想,而离子传导则得益于可容纳大离子的自由体积。为此,高结晶度聚合物往往被排除在高性能混合导体的结构-性能研究之外,因为它们的传输不平衡,偏向于电子电荷而非离子电荷。在此,我们研究了如何通过系统地将链间有序性与侧链工程相结合,在有序共轭聚合物中实现混合传导。我们合成了一系列基于异靛蓝 (IID) 的共聚物,这些共聚物具有不同数量的脂肪族和亲水侧链,并研究了链间有序性对混合传导的影响。通过晶体学、光谱-电化学和分子动力学研究,我们证明了系统性地引入亲水侧链可以通过增加链的柔韧性来减少体序和长程聚集,同时保持结晶畴内的链间堆叠距离。在晶体管器件中测试这些 IID 聚合物后发现,离子插入和器件的跨导率在很大程度上取决于亲水侧链的数量。我们证明,乙二醇侧链可以在保持链间秩序的同时增强混合传导。我们的研究结果表明,IID 系统有望设计出既能容纳离子物种,又不影响电子传导所需的链有序性的聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Advancements in polymer nanoconfinement: tailoring material properties for advanced technological applications Contrasting interchain order and mixed ionic–electronic conduction in conjugated polymers: an isoindigo case study† A polyamide and polyethylene multilayer composite with enhanced barrier and mechanical properties at high temperature† Will it blend? Exploring the viscoelastic characteristics of P3HT-polyborosiloxane blends towards flexible electronic materials†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1