Electron diffraction study of the transformation 6√3 reconstruction on 4H–SiC(0001) into quasi-free-standing epitaxial graphene

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Bulletin of Materials Science Pub Date : 2024-11-14 DOI:10.1007/s12034-024-03343-9
I S Kotousova, S P Lebedev, V V Antipov, A A Lebedev
{"title":"Electron diffraction study of the transformation 6√3 reconstruction on 4H–SiC(0001) into quasi-free-standing epitaxial graphene","authors":"I S Kotousova,&nbsp;S P Lebedev,&nbsp;V V Antipov,&nbsp;A A Lebedev","doi":"10.1007/s12034-024-03343-9","DOIUrl":null,"url":null,"abstract":"<div><p>A structural study of the transformation of 6√3 reconstruction on the surface of a 4H–SiC substrate into quasi-free epitaxial graphene was carried out by the reflection high-energy electron diffraction (RHEED) method. The conversion was carried out via hydrogen intercalation between the reconstructed layer and the adjacent top layer of SiC. The initial 6√3 reconstruction was obtained during short sublimation annealing of the 4H–SiC substrate in an argon medium. A slight violation of the 6√3 reconstruction layer formation uniformity was found. The results of the study of the crystal structure of quasi-free-standing graphene and single-layer graphene comprising a buffer layer formed on 4H–SiC in the traditional way in an Ar atmosphere without intercalation were compared.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03343-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A structural study of the transformation of 6√3 reconstruction on the surface of a 4H–SiC substrate into quasi-free epitaxial graphene was carried out by the reflection high-energy electron diffraction (RHEED) method. The conversion was carried out via hydrogen intercalation between the reconstructed layer and the adjacent top layer of SiC. The initial 6√3 reconstruction was obtained during short sublimation annealing of the 4H–SiC substrate in an argon medium. A slight violation of the 6√3 reconstruction layer formation uniformity was found. The results of the study of the crystal structure of quasi-free-standing graphene and single-layer graphene comprising a buffer layer formed on 4H–SiC in the traditional way in an Ar atmosphere without intercalation were compared.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
4H-SiC(0001) 上 6√3 重构转化为准自由外延石墨烯的电子衍射研究
通过反射高能电子衍射 (RHEED) 方法,对 4H-SiC 衬底表面 6√3 重构层转化为准无外延石墨烯的结构进行了研究。转换是通过重构层和相邻的碳化硅顶层之间的氢插层实现的。最初的 6√3 重构是在氩气介质中对 4H-SiC 基底进行短时间升华退火时获得的。发现 6√3 重构层形成的均匀性略有偏差。比较了准独立石墨烯和单层石墨烯的晶体结构研究结果,前者是在 4H-SiC 上以传统方法在无插层的氩气环境中形成的,后者则包含缓冲层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
期刊最新文献
Microwave-assisted synthesis of graphene oxide–cobalt ferrite magnetic nanocomposite for water remediation Effect of Silene vulgaris callus pectin on physicochemical properties of composite hydrogel beads based on pectin and sodium metasilicate Impact of magnesium hydroxide particles decorated Kenaf fibre on the physico-mechanical properties of polypropylene-based composites Structure and properties of RE2HE2O7 thermal barrier ceramics designed with high-entropy at different sites Production of biodegradable packaging film based on PLA/starch: optimization via response surface methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1