{"title":"Colloidal Semiconductor Cadmium Chalcogenide Nanorods and Nanoplatelets: Growth, Optical Anisotropy and Directed Assembly","authors":"Jaeyoon Moon, Haejin Jeon, Dahin Kim","doi":"10.1007/s11814-024-00321-z","DOIUrl":null,"url":null,"abstract":"<div><p>Colloidal anisotropic semiconductor nanocrystals (NCs), including nanorods (NRs) and nanoplatelets (NPLs), have garnered significant attention in nanotechnology due to their unique optical and electronic properties, which arise from their anisotropic geometries. This review delves into the anisotropic growth mechanisms, optical polarization characteristics, and directed assembly techniques of cadmium chalcogenide NRs and NPLs. It highlights how the anisotropic growth imparts distinct electronic and optical behaviors—NRs exhibit remarkable emission polarization influenced by aspect ratio and core/shell structures, while NPLs demonstrate highly directed emission due to quantum and dielectric confinements in the thickness. The review also explores state-of-the-art methods for large-scale alignment using organic mediators, emphasizing their potential to enhance the performance and application of the anisotropic semiconductor NCs in cutting-edge technologies.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 13","pages":"3413 - 3430"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00321-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Colloidal anisotropic semiconductor nanocrystals (NCs), including nanorods (NRs) and nanoplatelets (NPLs), have garnered significant attention in nanotechnology due to their unique optical and electronic properties, which arise from their anisotropic geometries. This review delves into the anisotropic growth mechanisms, optical polarization characteristics, and directed assembly techniques of cadmium chalcogenide NRs and NPLs. It highlights how the anisotropic growth imparts distinct electronic and optical behaviors—NRs exhibit remarkable emission polarization influenced by aspect ratio and core/shell structures, while NPLs demonstrate highly directed emission due to quantum and dielectric confinements in the thickness. The review also explores state-of-the-art methods for large-scale alignment using organic mediators, emphasizing their potential to enhance the performance and application of the anisotropic semiconductor NCs in cutting-edge technologies.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.