Conditional statistics at the turbulent/non-turbulent interface of variable viscosity jets

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Experiments in Fluids Pub Date : 2024-11-13 DOI:10.1007/s00348-024-03915-9
Léa Voivenel, Emilien Varea, Gilles Godard, Luminita Danaila
{"title":"Conditional statistics at the turbulent/non-turbulent interface of variable viscosity jets","authors":"Léa Voivenel,&nbsp;Emilien Varea,&nbsp;Gilles Godard,&nbsp;Luminita Danaila","doi":"10.1007/s00348-024-03915-9","DOIUrl":null,"url":null,"abstract":"<div><p>In nature as well as in industrial applications, turbulent mixing is ubiquitous. In most cases, these are different fluids with different physical properties (density and/or viscosity). Moreover, all important changes such as mass, momentum and scalar fluxes occur across the turbulent/non-turbulent interface, a thin and sharp layer that separates the turbulent core from the irrotational surrounding fluid. In this paper, we present statistics conditioned on the instantaneous interface position in the very near field of a variable viscosity jet to study the birth and growth of turbulence. The simultaneous scalar concentration and velocity fields are obtained from planar laser-induced fluorescence, where the images undergo an original correction and normalization process, and stereo-particle image velocimetry, respectively. We show that the turbulence is much more advanced in the variable viscosity flow (VVF), which exhibits some features that are visible much later in the constant viscosity flow (CVF). Furthermore, this study reveals a change in the nature of the mixing process between VVF and CVF, which needs to be further investigated.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 12","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03915-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In nature as well as in industrial applications, turbulent mixing is ubiquitous. In most cases, these are different fluids with different physical properties (density and/or viscosity). Moreover, all important changes such as mass, momentum and scalar fluxes occur across the turbulent/non-turbulent interface, a thin and sharp layer that separates the turbulent core from the irrotational surrounding fluid. In this paper, we present statistics conditioned on the instantaneous interface position in the very near field of a variable viscosity jet to study the birth and growth of turbulence. The simultaneous scalar concentration and velocity fields are obtained from planar laser-induced fluorescence, where the images undergo an original correction and normalization process, and stereo-particle image velocimetry, respectively. We show that the turbulence is much more advanced in the variable viscosity flow (VVF), which exhibits some features that are visible much later in the constant viscosity flow (CVF). Furthermore, this study reveals a change in the nature of the mixing process between VVF and CVF, which needs to be further investigated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可变粘度喷流湍流/非湍流界面的条件统计数据
在自然界和工业应用中,湍流混合无处不在。在大多数情况下,这些流体具有不同的物理特性(密度和/或粘度)。此外,所有重要的变化(如质量、动量和标量通量)都发生在湍流/非湍流界面上,这是一个尖锐的薄层,将湍流核心与不旋转的周围流体隔开。在本文中,我们提出了以可变粘度射流极近场中的瞬时界面位置为条件的统计数据,以研究湍流的产生和增长。同时获得的标量浓度场和速度场分别来自平面激光诱导荧光(图像经过原始校正和归一化处理)和立体粒子图像测速仪。我们发现,可变粘度流(VVF)中的湍流更为发达,其表现出的一些特征在恒定粘度流(CVF)中更晚才显现出来。此外,这项研究还揭示了 VVF 和 CVF 之间混合过程性质的变化,这需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
期刊最新文献
Development of a neutralization reaction in a droplet that extracts chemically active surfactant from its homogeneous solution Wall pressure control of a 3D cavity with lateral apertures and wall proximity Multiscale analysis of the textural atomization process of a rocket engine-assisted coaxial jet Conditional statistics at the turbulent/non-turbulent interface of variable viscosity jets Viscous and turbulent stress measurements above and below laboratory wind waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1