Floquet engineering of anomalous Hall effects in monolayer MoS2

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Quantum Materials Pub Date : 2024-11-14 DOI:10.1038/s41535-024-00702-x
Haijun Cao, Jia-Tao Sun, Sheng Meng
{"title":"Floquet engineering of anomalous Hall effects in monolayer MoS2","authors":"Haijun Cao, Jia-Tao Sun, Sheng Meng","doi":"10.1038/s41535-024-00702-x","DOIUrl":null,"url":null,"abstract":"<p>Light-matter interactions have emerged as a new research focus recently offering promises of unveiling novel physics and leading to applications under nonequilibrium conditions. The quantized Hall conductivities predicted by Floquet theory assuming a Fermi-Dirac distribution however deviate from experimental observations. To resolve these puzzles, we consider the effect of nonequilibrium electron occupation to study the anomalous, valley, and spin Hall effects of a prototype monolayer transition metal dichalcogenide MoS<sub>2</sub>. We find that spin Hall conductivity can be effectively suppressed approaching zero value by linearly polarized light under near resonant excitations. In contrast, it is substantially enhanced by circularly polarized light, originating from optical selection rules and topological phase transitions. Besides, the quantized anomalous Hall conductivity is much reduced if nonequilibrium occupations of Floquet bands are considered. Our study provides a novel avenue for engineering various Hall effects in two-dimensional materials using light, holding great promises for future device applications.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"44 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00702-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Light-matter interactions have emerged as a new research focus recently offering promises of unveiling novel physics and leading to applications under nonequilibrium conditions. The quantized Hall conductivities predicted by Floquet theory assuming a Fermi-Dirac distribution however deviate from experimental observations. To resolve these puzzles, we consider the effect of nonequilibrium electron occupation to study the anomalous, valley, and spin Hall effects of a prototype monolayer transition metal dichalcogenide MoS2. We find that spin Hall conductivity can be effectively suppressed approaching zero value by linearly polarized light under near resonant excitations. In contrast, it is substantially enhanced by circularly polarized light, originating from optical selection rules and topological phase transitions. Besides, the quantized anomalous Hall conductivity is much reduced if nonequilibrium occupations of Floquet bands are considered. Our study provides a novel avenue for engineering various Hall effects in two-dimensional materials using light, holding great promises for future device applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单层 MoS2 中反常霍尔效应的 Floquet 工程学
最近,光物质相互作用已成为一个新的研究重点,有望揭示新的物理学原理,并在非平衡条件下实现应用。然而,假设费米-狄拉克分布的弗洛凯理论所预测的量子化霍尔电导率与实验观测结果存在偏差。为了解决这些难题,我们考虑了非平衡电子占据的影响,研究了原型单层过渡金属二卤化物 MoS2 的反常、谷值和自旋霍尔效应。我们发现,在近共振激发下,线性偏振光可有效抑制自旋霍尔电导率,使其接近零值。与此相反,圆偏振光会大幅增强自旋霍尔电导率,这源于光学选择规则和拓扑相变。此外,如果考虑弗洛克特带的非平衡占用,量子化反常霍尔电导率会大大降低。我们的研究为利用光在二维材料中设计各种霍尔效应提供了一条新途径,为未来的器件应用带来了巨大前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
期刊最新文献
Spin-orbit entangled moments and magnetic exchange interactions in cobalt-based honeycomb magnets BaCo2(XO4)2 (X = P, As, Sb) Intrinsic second-order topological insulators in two-dimensional polymorphic graphyne with sublattice approximation Quantum phase transition and composite excitations of antiferromagnetic spin trimer chains in a magnetic field 3D Heisenberg universality in the van der Waals antiferromagnet NiPS3 Multinode quantum spin liquids in extended Kitaev honeycomb models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1