Interface engineering enabling thin lithium metal electrodes down to 0.78 μm for garnet-type solid-state batteries

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-15 DOI:10.1038/s41467-024-54234-w
Weijie Ji, Bi Luo, Qi Wang, Guihui Yu, Zixun Zhang, Yi Tian, Zaowen Zhao, Ruirui Zhao, Shubin Wang, Xiaowei Wang, Bao Zhang, Jiafeng Zhang, Zhiyuan Sang, Ji Liang
{"title":"Interface engineering enabling thin lithium metal electrodes down to 0.78 μm for garnet-type solid-state batteries","authors":"Weijie Ji, Bi Luo, Qi Wang, Guihui Yu, Zixun Zhang, Yi Tian, Zaowen Zhao, Ruirui Zhao, Shubin Wang, Xiaowei Wang, Bao Zhang, Jiafeng Zhang, Zhiyuan Sang, Ji Liang","doi":"10.1038/s41467-024-54234-w","DOIUrl":null,"url":null,"abstract":"<p>Controllable engineering of thin lithium (Li) metal is essential for increasing the energy density of solid-state batteries and clarifying the interfacial evolution mechanisms of a lithium metal negative electrode. However, fabricating a thin lithium electrode faces significant challenges due to the fragility and high viscosity of Li metal. Herein, through facile treatment of Ta-doped Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZTO) with trifluoromethanesulfonic acid, its surface Li<sub>2</sub>CO<sub>3</sub> species is converted into a lithiophilic layer with LiCF<sub>3</sub>SO<sub>3</sub> and LiF components. It enables the thickness control of Li metal negative electrodes, ranging from 0.78 μm to 30 μm. Quasi-solid-state lithium-metal battery with an optimized 7.54 μm-thick lithium metal negative electrode, a commercial LiNi<sub>0.83</sub>Co<sub>0.11</sub>Mn<sub>0.06</sub>O<sub>2</sub> positive electrode, and a negative/positive electrode capacity ratio of 1.1 shows a 500 cycles lifespan with a final discharge specific capacity of 99 mAh g<sup>−1</sup> at 2.35 mA cm<sup>−2</sup> and 25 °C. Through multi-scale characterizations of the thin lithium negative electrode, we clarify the multi-dimensional compositional evolution and failure mechanisms of lithium-deficient and -rich regions (0.78 μm and 7.54 μm), on its surface, inside it, or at the Li/LLZTO interface.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"64 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54234-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Controllable engineering of thin lithium (Li) metal is essential for increasing the energy density of solid-state batteries and clarifying the interfacial evolution mechanisms of a lithium metal negative electrode. However, fabricating a thin lithium electrode faces significant challenges due to the fragility and high viscosity of Li metal. Herein, through facile treatment of Ta-doped Li7La3Zr2O12 (LLZTO) with trifluoromethanesulfonic acid, its surface Li2CO3 species is converted into a lithiophilic layer with LiCF3SO3 and LiF components. It enables the thickness control of Li metal negative electrodes, ranging from 0.78 μm to 30 μm. Quasi-solid-state lithium-metal battery with an optimized 7.54 μm-thick lithium metal negative electrode, a commercial LiNi0.83Co0.11Mn0.06O2 positive electrode, and a negative/positive electrode capacity ratio of 1.1 shows a 500 cycles lifespan with a final discharge specific capacity of 99 mAh g−1 at 2.35 mA cm−2 and 25 °C. Through multi-scale characterizations of the thin lithium negative electrode, we clarify the multi-dimensional compositional evolution and failure mechanisms of lithium-deficient and -rich regions (0.78 μm and 7.54 μm), on its surface, inside it, or at the Li/LLZTO interface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
界面工程使石榴石型固态电池的锂金属电极薄至 0.78 μm
锂(Li)金属薄板的可控工程对于提高固态电池的能量密度和阐明锂金属负极的界面演化机制至关重要。然而,由于锂金属的脆性和高粘度,制造薄型锂电极面临着巨大挑战。在此,通过用三氟甲磺酸简单处理掺杂 Ta 的 Li7La3Zr2O12 (LLZTO),将其表面的 Li2CO3 物种转化为含有 LiCF3SO3 和 LiF 成分的亲锂层。这使得锂金属负极的厚度控制范围从 0.78 μm 到 30 μm。采用优化的 7.54 μm 厚金属锂负极、商用 LiNi0.83Co0.11Mn0.06O2 正极、负极/正极容量比为 1.1 的准固态锂金属电池在 2.35 mA cm-2 和 25 °C 条件下可循环使用 500 次,最终放电比容量为 99 mAh g-1。通过对薄型锂负极的多尺度表征,我们阐明了其表面、内部或锂/LLZTO 界面的缺锂和富锂区域(0.78 μm 和 7.54 μm)的多维成分演变和失效机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Reply to: Machine learning-driven virtual biopsy system may increase organ discards at aggressive kidney transplant centers On the origin of mitosis-derived human embryo aneuploidy A vaccine platform targeting lung-resident memory CD4+ T-cells provides protection against heterosubtypic influenza infections in mice and ferrets Moiré magnetism in CrBr3 multilayers emerging from differential strain Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1