Julian Gurs, Nina Bode, Christian Darsow-Fromm, Henning Vahlbruch, Pascal Gewecke, Sebastian Steinlechner, Benno Willke and Roman Schnabel
{"title":"Conversion of 30 W laser light at 1064 nm to 20 W at 2128 nm and comparison of relative power noise","authors":"Julian Gurs, Nina Bode, Christian Darsow-Fromm, Henning Vahlbruch, Pascal Gewecke, Sebastian Steinlechner, Benno Willke and Roman Schnabel","doi":"10.1088/1361-6382/ad8f8b","DOIUrl":null,"url":null,"abstract":"All current gravitational wave (GW) observatories operate with Nd:YAG lasers with a wavelength of 1064 nm. The sensitivity of future GW observatories could benefit significantly from changing the laser wavelength to approximately 2 µm combined with exchanging the current room temperature test mass mirrors with cryogenically cooled crystalline silicon test masses with mirror coatings from amorphous silicon and amorphous silicon nitride layers. Laser light of the order of ten watts with a low relative power noise (RPN) would be required. Here we use a laboratory-built degenerate optical parametric oscillator to convert the light from a high-power Nd:YAG laser to 2128 nm. With an input power of 30 W, we achieve an output power of 20 W, which corresponds to an external conversion efficiency of approximately 67%. We find that the RPN spectrum marginally increases during the wavelength conversion process. Our result is an important step in the development of low-noise light around 2 µm based on existing low-noise Nd:YAG lasers.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"46 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad8f8b","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
All current gravitational wave (GW) observatories operate with Nd:YAG lasers with a wavelength of 1064 nm. The sensitivity of future GW observatories could benefit significantly from changing the laser wavelength to approximately 2 µm combined with exchanging the current room temperature test mass mirrors with cryogenically cooled crystalline silicon test masses with mirror coatings from amorphous silicon and amorphous silicon nitride layers. Laser light of the order of ten watts with a low relative power noise (RPN) would be required. Here we use a laboratory-built degenerate optical parametric oscillator to convert the light from a high-power Nd:YAG laser to 2128 nm. With an input power of 30 W, we achieve an output power of 20 W, which corresponds to an external conversion efficiency of approximately 67%. We find that the RPN spectrum marginally increases during the wavelength conversion process. Our result is an important step in the development of low-noise light around 2 µm based on existing low-noise Nd:YAG lasers.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.