Petrov–Galerkin Dynamical Low Rank Approximation: SUPG stabilisation of advection-dominated problems

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-11-13 DOI:10.1016/j.cma.2024.117495
Fabio Nobile, Thomas Trigo Trindade
{"title":"Petrov–Galerkin Dynamical Low Rank Approximation: SUPG stabilisation of advection-dominated problems","authors":"Fabio Nobile,&nbsp;Thomas Trigo Trindade","doi":"10.1016/j.cma.2024.117495","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel framework of generalised Petrov–Galerkin Dynamical Low Rank (DLR) Approximations in the context of random PDEs. It builds on the standard Dynamical Low Rank Approximations in their Dynamically Orthogonal formulation. It allows to seamlessly build-in many standard and well-studied stabilisation techniques that can be framed as either generalised Galerkin methods, or Petrov–Galerkin methods. The framework is subsequently applied to the case of Streamline Upwind/Petrov–Galerkin (SUPG) stabilisation of advection-dominated problems with small stochastic perturbations of the transport field. The norm-stability properties of two time discretisations are analysed. Numerical experiments confirm that the stabilising properties of the SUPG method naturally carry over to the DLR framework.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117495"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007497","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel framework of generalised Petrov–Galerkin Dynamical Low Rank (DLR) Approximations in the context of random PDEs. It builds on the standard Dynamical Low Rank Approximations in their Dynamically Orthogonal formulation. It allows to seamlessly build-in many standard and well-studied stabilisation techniques that can be framed as either generalised Galerkin methods, or Petrov–Galerkin methods. The framework is subsequently applied to the case of Streamline Upwind/Petrov–Galerkin (SUPG) stabilisation of advection-dominated problems with small stochastic perturbations of the transport field. The norm-stability properties of two time discretisations are analysed. Numerical experiments confirm that the stabilising properties of the SUPG method naturally carry over to the DLR framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Petrov-Galerkin 动态低等级逼近:平流主导问题的 SUPG 稳定化
我们提出了一种新颖的通用 Petrov-Galerkin 动态低阶近似法(DLR)框架,用于随机 PDEs。它建立在动态正交表述的标准动态低秩逼近基础之上。它允许无缝内置许多标准的、经过充分研究的稳定技术,这些技术可以被归类为广义 Galerkin 方法或 Petrov-Galerkin 方法。该框架随后被应用于流线上风/Petrov-Galerkin(SUPG)稳定输送场小随机扰动的平流主导问题。分析了两种时间离散的规范稳定性。数值实验证实,SUPG 方法的稳定特性可以自然地延续到 DLR 框架中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Editorial Board Fatigue-constrained topology optimization method for orthotropic materials based on an expanded Tsai-Hill criterion Modelling of thermo-mechanical coupling effects in rock masses using an enriched nodal-based continuous-discontinuous deformation analysis method Interpretable A-posteriori error indication for graph neural network surrogate models Adaptive parameter selection in nudging based data assimilation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1