{"title":"Petrov–Galerkin Dynamical Low Rank Approximation: SUPG stabilisation of advection-dominated problems","authors":"Fabio Nobile, Thomas Trigo Trindade","doi":"10.1016/j.cma.2024.117495","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel framework of generalised Petrov–Galerkin Dynamical Low Rank (DLR) Approximations in the context of random PDEs. It builds on the standard Dynamical Low Rank Approximations in their Dynamically Orthogonal formulation. It allows to seamlessly build-in many standard and well-studied stabilisation techniques that can be framed as either generalised Galerkin methods, or Petrov–Galerkin methods. The framework is subsequently applied to the case of Streamline Upwind/Petrov–Galerkin (SUPG) stabilisation of advection-dominated problems with small stochastic perturbations of the transport field. The norm-stability properties of two time discretisations are analysed. Numerical experiments confirm that the stabilising properties of the SUPG method naturally carry over to the DLR framework.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117495"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007497","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel framework of generalised Petrov–Galerkin Dynamical Low Rank (DLR) Approximations in the context of random PDEs. It builds on the standard Dynamical Low Rank Approximations in their Dynamically Orthogonal formulation. It allows to seamlessly build-in many standard and well-studied stabilisation techniques that can be framed as either generalised Galerkin methods, or Petrov–Galerkin methods. The framework is subsequently applied to the case of Streamline Upwind/Petrov–Galerkin (SUPG) stabilisation of advection-dominated problems with small stochastic perturbations of the transport field. The norm-stability properties of two time discretisations are analysed. Numerical experiments confirm that the stabilising properties of the SUPG method naturally carry over to the DLR framework.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.