Dual N-Heterocyclic Carbene/Photoredox-Catalyzed Coupling of Acyl Fluorides and Alkyl Silanes

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-11-15 DOI:10.1021/acscatal.4c03103
Michael Jakob, Luca Steiner, Marius Göbel, Jan P. Götze, Matthew N. Hopkinson
{"title":"Dual N-Heterocyclic Carbene/Photoredox-Catalyzed Coupling of Acyl Fluorides and Alkyl Silanes","authors":"Michael Jakob, Luca Steiner, Marius Göbel, Jan P. Götze, Matthew N. Hopkinson","doi":"10.1021/acscatal.4c03103","DOIUrl":null,"url":null,"abstract":"The combination of N-heterocyclic carbene (NHC) organocatalysis with photochemical activation is becoming increasingly established as an approach for conducting radical organic reactions under mild and practical conditions. As comparatively easy to prepare and handle organic compounds, alkyl silanes are attractive substrates for radical chemistry as desilylative mesolysis of the corresponding radical cations is known to be rapid. Here, we report the successful application of benzyl silane derivatives as source of alkyl radicals in dual NHC/photoredox-catalyzed radical–radical coupling reactions with acyl fluorides. Relatively electron-rich benzyl silanes reacted smoothly to afford the corresponding ketones in generally good yields, while optimization of the NHC and photocatalyst allowed for a wider scope including primary benzyl substrates. Furthermore, initial experiments revealed that organosilanes bearing N-, O- and S-heteroatoms can also serve as alkyl radical sources under these conditions.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"13 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c03103","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of N-heterocyclic carbene (NHC) organocatalysis with photochemical activation is becoming increasingly established as an approach for conducting radical organic reactions under mild and practical conditions. As comparatively easy to prepare and handle organic compounds, alkyl silanes are attractive substrates for radical chemistry as desilylative mesolysis of the corresponding radical cations is known to be rapid. Here, we report the successful application of benzyl silane derivatives as source of alkyl radicals in dual NHC/photoredox-catalyzed radical–radical coupling reactions with acyl fluorides. Relatively electron-rich benzyl silanes reacted smoothly to afford the corresponding ketones in generally good yields, while optimization of the NHC and photocatalyst allowed for a wider scope including primary benzyl substrates. Furthermore, initial experiments revealed that organosilanes bearing N-, O- and S-heteroatoms can also serve as alkyl radical sources under these conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酰基氟化物和烷基硅烷的双 N-杂环羰基/光氧化催化偶联反应
N-heterocyclic carbene(NHC)有机催化与光化学活化的结合正日益成为一种在温和、实用的条件下进行有机自由基反应的方法。作为比较容易制备和处理的有机化合物,烷基硅烷是具有吸引力的自由基化学底物,因为众所周知,相应自由基阳离子的脱硅介解速度很快。在此,我们报告了苄基硅烷衍生物作为烷基自由基源在 NHC/光氧催化的自由基与酰氟的双自由基偶联反应中的成功应用。电子相对丰富的苄基硅烷能顺利地与相应的酮类发生反应,且产率普遍较高,而对 NHC 和光催化剂的优化则扩大了反应范围,包括初级苄基底物。此外,初步实验表明,在这些条件下,含有 N、O 和 S 杂原子的有机硅烷也可以作为烷基自由基源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Ancestral Sequence Reconstruction Meets Machine Learning: Ene Reductase Thermostabilization Yields Enzymes with Improved Reactivity Profiles Exploring the Mechanism of Biomimetic Arene Hydroxylation: When a Diiron Metal Center Meets a Sulfur-Containing Ligand {TiO2/TiO2(B)} Quantum Dot Hybrids: A Comprehensible Route toward High-Performance [>0.1 mol gr–1 h–1] Photocatalytic H2 Production from H2O Geometrically Constrained Cofacial Bi-Titanium Olefin Polymerization Catalysts: Tuning and Enhancing Comonomer Incorporation Density Expanding the Reaction Network of Ethylene Epoxidation on Partially Oxidized Silver Catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1