Determination of the gas-liquid reaction kinetic for sulfur dioxide absorption in sodium chlorite aqueous solutions

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-11-15 DOI:10.1016/j.ces.2024.120938
D. Ricchiari, D. Flagiello, A. Erto, L. Amato, A. Lancia, FDi Natale
{"title":"Determination of the gas-liquid reaction kinetic for sulfur dioxide absorption in sodium chlorite aqueous solutions","authors":"D. Ricchiari, D. Flagiello, A. Erto, L. Amato, A. Lancia, FDi Natale","doi":"10.1016/j.ces.2024.120938","DOIUrl":null,"url":null,"abstract":"This study is part of the research activities devoted to the development of new gas-cleaning technologies required to minimize the emissions factors of sulfur compounds in chemical industries and power plants. Among flue gas desulfurization (FGD) processes, wet scrubbing with oxidizing chemicals, e.g. sodium chlorite (NaClO<sub>2</sub>) has appeared as a viable option for different applications. The present work aims to study the absorption kinetics of the gas-liquid reaction between sulfur dioxide (SO<sub>2</sub>) and NaClO<sub>2</sub>, in a lab-scale falling-film absorber, investigating the effects of the main process parameters: liquid and gas flow rates, SO<sub>2</sub> gas-phase concentration, NaClO<sub>2</sub> liquid-phase concentration, solution pH and process temperature. The experimental activity aims to determine the Enhancement Factor (<em>E<sub>L</sub></em>) to develop a kinetic model for reactive absorption. To this end, kinetic parameters are calculated from experiments using the Danckwerts equation for a pseudo-second-order reaction kinetic, determining a maximum prediction error of ±20 % compared to the experimental data. Experimental data available in the literature on pilot-scale oxidative FGD scrubbers using chlorite are used to test the validity and robustness of the kinetic model. The kinetic model is able to predict the data with good accuracy within a prediction error range of ±30 %.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"46 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2024.120938","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study is part of the research activities devoted to the development of new gas-cleaning technologies required to minimize the emissions factors of sulfur compounds in chemical industries and power plants. Among flue gas desulfurization (FGD) processes, wet scrubbing with oxidizing chemicals, e.g. sodium chlorite (NaClO2) has appeared as a viable option for different applications. The present work aims to study the absorption kinetics of the gas-liquid reaction between sulfur dioxide (SO2) and NaClO2, in a lab-scale falling-film absorber, investigating the effects of the main process parameters: liquid and gas flow rates, SO2 gas-phase concentration, NaClO2 liquid-phase concentration, solution pH and process temperature. The experimental activity aims to determine the Enhancement Factor (EL) to develop a kinetic model for reactive absorption. To this end, kinetic parameters are calculated from experiments using the Danckwerts equation for a pseudo-second-order reaction kinetic, determining a maximum prediction error of ±20 % compared to the experimental data. Experimental data available in the literature on pilot-scale oxidative FGD scrubbers using chlorite are used to test the validity and robustness of the kinetic model. The kinetic model is able to predict the data with good accuracy within a prediction error range of ±30 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测定亚氯酸钠水溶液吸收二氧化硫的气液反应动力学
这项研究是致力于开发新气体净化技术的研究活动的一部分,这些技术旨在最大限度地降低化学工业和发电厂的硫化物排放系数。在烟气脱硫(FGD)工艺中,使用氧化性化学品(如亚氯酸钠(NaClO2))进行湿法洗涤已成为不同应用领域的可行选择。本工作旨在研究二氧化硫(SO2)和 NaClO2 在实验室规模的降膜吸收器中发生气液反应的吸收动力学,调查主要工艺参数的影响:液体和气体流速、SO2 气相浓度、NaClO2 液相浓度、溶液 pH 值和工艺温度。实验活动旨在确定增强因子 (EL),以开发反应吸收的动力学模型。为此,使用假二阶反应动力学的 Danckwerts 方程,通过实验计算出动力学参数,确定与实验数据相比,最大预测误差为 ±20%。文献中关于使用亚氯酸盐的中试规模氧化脱硫洗涤器的实验数据被用来检验动力学模型的有效性和稳健性。动力学模型能够在 ±30 % 的预测误差范围内准确预测数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Experimental study on the motion characteristics of non-spherical biomass particulate systems in a fluidization tube Synthesis of heterostructured microspheres for efficient removal of malachite green and basic fuchsine Redox-Animated Supra-Amphiphilic Host-Guest interfacial recognition for Reconfiguring Alginate-Derived hierarchical colloidal particles to enhance foliar pesticide deposition An effective strategy for coal-series kaolin utilization: Preparation of magnetic adsorbent for Congo red adsorption La-doped MnCo2O4.5 modified Ti/SnO2-Sb2O4/PbO2 anode for enhancing the electrochemical performance in zinc electrowinning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1