{"title":"Water-Vapor-Triggered Dual-Mode Optical Responses in Rare-Earth-Doped Hollow Nanospheres.","authors":"Hongji Huang, Zixian Chen, Hanqi Zheng, Yingyi Ou, Jianing Zhang, Kang Xiao, Jinqing Huang, Zhao-Qing Liu, Yibo Chen","doi":"10.1021/acs.nanolett.4c03714","DOIUrl":null,"url":null,"abstract":"<p><p>Multimode responsive optical materials are garnering ever-increasing attention due to their diverse applications. This work showcases a film assembled with rare-earth-doped CaF<sub>2</sub> hollow nanospheres that exhibit water-vapor-triggered dual-mode optical responses. Upon exposure to flowing water vapor, the film rapidly (less than 1.5 s for a 7.7 μm thickness) transitions to a transparent state and simultaneously undergoes a sharp decrease in the photoluminescence intensity. Both of these changes fully reverse upon water evaporation, demonstrating an impressive reversibility over at least 200 cycles. The water-vapor-induced dual-mode responses are attributed to the altered incident light propagation path stemming from the similar refractive indices between CaF<sub>2</sub> and water, coupled with the water-induced energy loss of the rare-earth ions. The fabrication of encryption patterns displaying separate signals in multiple channels, as well as the demonstration of noncontact sensing for water vapor distribution, underscore the promising application potential of this dual-mode responsive system.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03714","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multimode responsive optical materials are garnering ever-increasing attention due to their diverse applications. This work showcases a film assembled with rare-earth-doped CaF2 hollow nanospheres that exhibit water-vapor-triggered dual-mode optical responses. Upon exposure to flowing water vapor, the film rapidly (less than 1.5 s for a 7.7 μm thickness) transitions to a transparent state and simultaneously undergoes a sharp decrease in the photoluminescence intensity. Both of these changes fully reverse upon water evaporation, demonstrating an impressive reversibility over at least 200 cycles. The water-vapor-induced dual-mode responses are attributed to the altered incident light propagation path stemming from the similar refractive indices between CaF2 and water, coupled with the water-induced energy loss of the rare-earth ions. The fabrication of encryption patterns displaying separate signals in multiple channels, as well as the demonstration of noncontact sensing for water vapor distribution, underscore the promising application potential of this dual-mode responsive system.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.