Se–S bonded non-metal elementary substance heterojunction activating photoelectrochemical water splitting

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-11-10 DOI:10.1016/j.jcis.2024.11.059
Qingxia Zhou, Chuanzhen Feng, Xiaodong Wang, Jialing He, Junyu Wang, Huijuan Zhang, Yu Wang
{"title":"Se–S bonded non-metal elementary substance heterojunction activating photoelectrochemical water splitting","authors":"Qingxia Zhou,&nbsp;Chuanzhen Feng,&nbsp;Xiaodong Wang,&nbsp;Jialing He,&nbsp;Junyu Wang,&nbsp;Huijuan Zhang,&nbsp;Yu Wang","doi":"10.1016/j.jcis.2024.11.059","DOIUrl":null,"url":null,"abstract":"<div><div>Non-metal elements are often merely regarded as electronic modulators, yet their intrinsic characteristics are frequently overlooked. Indeed, non-metal elements possess notable advantages in high-abundance, excellent hydrogen adsorption and the ability of active sites to be inversely activated, rendering them potential photoelectrochemical (PEC) materials. However, weak non-metal interbinding, susceptibility to photocorrosion, and high photogenerated carrier recombination rates hinder their practical applications. Herein, for the first time, we report a novel non-metal elementary substance heterojunction Se/S based on interfacial bonding engineering strategy. Atomic-level tight coupling of sulfonyl-rich sulfur quantum dots (SQDs) with selenium microtube arrays (Se-MTAs) enhances the structural stability of Se/S and introduces crucial Se–S heterointerfacial bonds, which not only endow Se/S with robust internal electronic interactions, but also provide high-speed channels for charge separation via unique bridging. Consequently, Se/S achieves optimal photocurrent density of 3.91 mA cm<sup>−2</sup> at 0 V<sub>RHE</sub>, accompanied by long-term stability over 24 h. It is the highest value reported to date for Se-based photocathodes without co-catalyst and outperforms most metal-selenide-based photoelectrodes. Furthermore, the direct Z-scheme charge transport mechanism is exposed by in-depth spectroscopic analyses. Our work fills the gap in application of non-metal elementary substance heterojunction for PEC, poised for potential expansion into other new-energy devices.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 868-879"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724026353","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Non-metal elements are often merely regarded as electronic modulators, yet their intrinsic characteristics are frequently overlooked. Indeed, non-metal elements possess notable advantages in high-abundance, excellent hydrogen adsorption and the ability of active sites to be inversely activated, rendering them potential photoelectrochemical (PEC) materials. However, weak non-metal interbinding, susceptibility to photocorrosion, and high photogenerated carrier recombination rates hinder their practical applications. Herein, for the first time, we report a novel non-metal elementary substance heterojunction Se/S based on interfacial bonding engineering strategy. Atomic-level tight coupling of sulfonyl-rich sulfur quantum dots (SQDs) with selenium microtube arrays (Se-MTAs) enhances the structural stability of Se/S and introduces crucial Se–S heterointerfacial bonds, which not only endow Se/S with robust internal electronic interactions, but also provide high-speed channels for charge separation via unique bridging. Consequently, Se/S achieves optimal photocurrent density of 3.91 mA cm−2 at 0 VRHE, accompanied by long-term stability over 24 h. It is the highest value reported to date for Se-based photocathodes without co-catalyst and outperforms most metal-selenide-based photoelectrodes. Furthermore, the direct Z-scheme charge transport mechanism is exposed by in-depth spectroscopic analyses. Our work fills the gap in application of non-metal elementary substance heterojunction for PEC, poised for potential expansion into other new-energy devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激活光电化学水分离的 Se-S 键非金属基本物质异质结。
非金属元素通常只被视为电子调制器,但其内在特性却经常被忽视。事实上,非金属元素具有高丰度、出色的氢吸附性和活性位点反向活化能力等显著优势,使其成为潜在的光电化学(PEC)材料。然而,非金属间结合力弱、易受光腐蚀以及光生载流子重组率高等问题阻碍了它们的实际应用。在此,我们首次报道了一种基于界面结合工程策略的新型非金属基本物质异质结 Se/S。富磺酰基硫量子点(SQDs)与硒微管阵列(Se-MTAs)的原子级紧密耦合增强了 Se/S 的结构稳定性,并引入了关键的 Se-S 异界面键,这不仅赋予了 Se/S 强大的内部电子相互作用,还通过独特的桥接为电荷分离提供了高速通道。因此,Se/S 在 0 VRHE 条件下可达到 3.91 mA cm-2 的最佳光电流密度,并可在 24 小时内保持长期稳定性。这是迄今为止所报道的不含助催化剂的硒基光电阴极的最高值,其性能优于大多数金属硒基光电电极。此外,深入的光谱分析揭示了直接 Z 型电荷传输机制。我们的研究填补了非金属基本物质异质结在 PEC 应用方面的空白,有望扩展到其他新能源设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Efficient urea electrosynthesis from nitrite and CO2 reduction on single W atom catalyst The critical effect of different additive interlayer anions on NiFe-LDH for direct seawater splitting: A theoretical study Outside Front Cover Editorial Board Outside Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1