Quantitative Trait Locus Mapping and Candidate Gene Analysis of the Contents of Three Tanshinone Components in Salvia miltiorrhiza Bunge.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Genetics Pub Date : 2024-11-15 DOI:10.1007/s10528-024-10964-6
Yan Yu, Zaijun Yang, Yichao Wu, Yuanyuan Jiang, Jinqiu Liao, Ruiwu Yang, Li Zhang
{"title":"Quantitative Trait Locus Mapping and Candidate Gene Analysis of the Contents of Three Tanshinone Components in Salvia miltiorrhiza Bunge.","authors":"Yan Yu, Zaijun Yang, Yichao Wu, Yuanyuan Jiang, Jinqiu Liao, Ruiwu Yang, Li Zhang","doi":"10.1007/s10528-024-10964-6","DOIUrl":null,"url":null,"abstract":"<p><p>Tanshinones are abietane diterpenoid quinone compounds with diverse biological activities and pharmacological effects found in Salvia miltiorrhiza. Leveraging the high-density genetic map established through our prior research endeavors, we conducted a quantitative trait locus (QTL) analysis pertaining to the concentrations of three major tanshinone components, cryptotanshinone, tanshinone I, and tanshinone IIA, in S. miltiorrhiza. This extensive investigation was conducted across three distinct planting environments, ultimately identifying a comprehensive repertoire of 27 discernible QTLs. These QTLs were mapped onto four distinct linkage groups (LG), namely LG1, LG5, LG6, and LG7, which explained 3.11%-37.85% phenotypic variation. Candidate genes were projected based on consistent QTLs detected for each active ingredient in three environments. Nineteen putative candidate genes involved in the regulation of tanshinone biosynthesis were identified. These genes participate in primary metabolic and multiple branching terpenoid biosynthesis pathways, forming a complex regulatory network. Our findings have the potential to offer novel insights into advancing the understanding of the regulatory mechanisms governing tanshinone biosynthesis. Furthermore, these results establish crucial groundwork for gene discovery, marker-assisted selection breeding, and map-based cloning of functional genes associated with tanshinone content in S. miltiorrhiza.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10964-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tanshinones are abietane diterpenoid quinone compounds with diverse biological activities and pharmacological effects found in Salvia miltiorrhiza. Leveraging the high-density genetic map established through our prior research endeavors, we conducted a quantitative trait locus (QTL) analysis pertaining to the concentrations of three major tanshinone components, cryptotanshinone, tanshinone I, and tanshinone IIA, in S. miltiorrhiza. This extensive investigation was conducted across three distinct planting environments, ultimately identifying a comprehensive repertoire of 27 discernible QTLs. These QTLs were mapped onto four distinct linkage groups (LG), namely LG1, LG5, LG6, and LG7, which explained 3.11%-37.85% phenotypic variation. Candidate genes were projected based on consistent QTLs detected for each active ingredient in three environments. Nineteen putative candidate genes involved in the regulation of tanshinone biosynthesis were identified. These genes participate in primary metabolic and multiple branching terpenoid biosynthesis pathways, forming a complex regulatory network. Our findings have the potential to offer novel insights into advancing the understanding of the regulatory mechanisms governing tanshinone biosynthesis. Furthermore, these results establish crucial groundwork for gene discovery, marker-assisted selection breeding, and map-based cloning of functional genes associated with tanshinone content in S. miltiorrhiza.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丹参中三种丹参酮成分的定量性状基因座图谱和候选基因分析
丹参酮(Tanshinones)是丹参(Salvia miltiorrhiza)中具有多种生物活性和药理作用的双萜类醌化合物。我们利用之前研究建立的高密度遗传图谱,对丹参中三种主要丹参酮成分(隐丹参酮、丹参酮 I 和丹参酮 IIA)的浓度进行了定量性状位点(QTL)分析。这项广泛的调查在三种不同的种植环境中进行,最终确定了 27 个可辨别的 QTLs。这些 QTL 映射到四个不同的连锁群(LG)上,即 LG1、LG5、LG6 和 LG7,它们解释了 3.11%-37.85%的表型变异。根据在三种环境中检测到的每种有效成分的一致 QTL,推测出候选基因。确定了 19 个参与丹参酮生物合成调控的推测候选基因。这些基因参与了初级代谢和多分支萜类化合物的生物合成途径,形成了一个复杂的调控网络。我们的发现有可能为进一步了解丹参酮生物合成的调控机制提供新的见解。此外,这些结果为发现丹参酮含量相关的基因、标记辅助选择育种和基于图谱的功能基因克隆奠定了重要基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
期刊最新文献
The Novel Direct AR Target Gene Annexin A2 Mediates Androgen-Induced Cellular Senescence in Prostate Cancer Cells. Genetic Parameters and Prediction of Genotypic Values for Postharvest Physiological Deterioration Tolerance and Root Traits in Cassava using REML/BLUP. Maternal Genetic Diversity Analysis of Guanling Cattle by Mitochondrial Genome Sequencing. Identification of Novel Genomic Variants in COVID-19 Patients Using Whole-Exome Sequencing: Exploring the Plausible Targets of Functional Genomics. A Meta-Analysis of Association Between Interleukin Polymorphisms (rs4073, rs1800925, rs1179251, rs1179246, rs2227485, rs17855750, and rs153109) and Colorectal Cancer Risk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1