Jennifer K Heppert, Ryan Musumba Awori, Mengyi Cao, Grischa Chen, Jemma McLeish, Heidi Goodrich-Blair
{"title":"Analyses of Xenorhabdus griffiniae genomes reveal two distinct sub-species that display intra-species variation due to prophages.","authors":"Jennifer K Heppert, Ryan Musumba Awori, Mengyi Cao, Grischa Chen, Jemma McLeish, Heidi Goodrich-Blair","doi":"10.1186/s12864-024-10858-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nematodes of the genus Steinernema and their Xenorhabdus bacterial symbionts are lethal entomopathogens that are useful in the biocontrol of insect pests, as sources of diverse natural products, and as research models for mutualism and parasitism. Xenorhabdus play a central role in all aspects of the Steinernema lifecycle, and a deeper understanding of their genomes therefore has the potential to spur advances in each of these applications.</p><p><strong>Results: </strong>Here, we report a comparative genomics analysis of Xenorhabdus griffiniae, including the symbiont of Steinernema hermaphroditum nematodes, for which genetic and genomic tools are being developed. We sequenced and assembled circularized genomes for three Xenorhabdus strains: HGB2511, ID10 and TH1. We then determined their relationships to other Xenorhabdus and delineated their species via phylogenomic analyses, concluding that HGB2511 and ID10 are Xenorhabdus griffiniae while TH1 is a novel species. These additions to the existing X. griffiniae landscape further allowed for the identification of two subspecies within the clade. Consistent with other Xenorhabdus, the analysed X. griffiniae genomes each encode a wide array of antimicrobials and virulence-related proteins. Comparative genomic analyses, including the creation of a pangenome, revealed that a large amount of the intraspecies variation in X. griffiniae is contained within the mobilome and attributable to prophage loci. In addition, CRISPR arrays, secondary metabolite potential and toxin genes all varied among strains within the X. griffiniae species.</p><p><strong>Conclusions: </strong>Our findings suggest that phage-related genes drive the genomic diversity in closely related Xenorhabdus symbionts, and that these may underlie some of the traits most associated with the lifestyle and survival of entomopathogenic nematodes and their bacteria: virulence and competition. This study establishes a broad knowledge base for further exploration of not only the relationships between X. griffiniae species and their nematode hosts but also the molecular mechanisms that underlie their entomopathogenic lifestyle.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1087"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-10858-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Nematodes of the genus Steinernema and their Xenorhabdus bacterial symbionts are lethal entomopathogens that are useful in the biocontrol of insect pests, as sources of diverse natural products, and as research models for mutualism and parasitism. Xenorhabdus play a central role in all aspects of the Steinernema lifecycle, and a deeper understanding of their genomes therefore has the potential to spur advances in each of these applications.
Results: Here, we report a comparative genomics analysis of Xenorhabdus griffiniae, including the symbiont of Steinernema hermaphroditum nematodes, for which genetic and genomic tools are being developed. We sequenced and assembled circularized genomes for three Xenorhabdus strains: HGB2511, ID10 and TH1. We then determined their relationships to other Xenorhabdus and delineated their species via phylogenomic analyses, concluding that HGB2511 and ID10 are Xenorhabdus griffiniae while TH1 is a novel species. These additions to the existing X. griffiniae landscape further allowed for the identification of two subspecies within the clade. Consistent with other Xenorhabdus, the analysed X. griffiniae genomes each encode a wide array of antimicrobials and virulence-related proteins. Comparative genomic analyses, including the creation of a pangenome, revealed that a large amount of the intraspecies variation in X. griffiniae is contained within the mobilome and attributable to prophage loci. In addition, CRISPR arrays, secondary metabolite potential and toxin genes all varied among strains within the X. griffiniae species.
Conclusions: Our findings suggest that phage-related genes drive the genomic diversity in closely related Xenorhabdus symbionts, and that these may underlie some of the traits most associated with the lifestyle and survival of entomopathogenic nematodes and their bacteria: virulence and competition. This study establishes a broad knowledge base for further exploration of not only the relationships between X. griffiniae species and their nematode hosts but also the molecular mechanisms that underlie their entomopathogenic lifestyle.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.