Joshua W-H Chang, Siyi Chen, Charlotte Hamilton, Julia Shanks, Mridula Pachen, Audrys Pauza, Bindu George, Rohit Ramchandra
{"title":"Characterization of a novel ovine model of hypertensive heart failure with preserved ejection fraction.","authors":"Joshua W-H Chang, Siyi Chen, Charlotte Hamilton, Julia Shanks, Mridula Pachen, Audrys Pauza, Bindu George, Rohit Ramchandra","doi":"10.1152/ajpheart.00548.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The lack of animal models which accurately represent heart failure with preserved ejection fraction (HFpEF) has been a major barrier to the mechanistic understanding and development of effective therapies for this prevalent and debilitating syndrome characterized by multisystem impairments. Herein, we describe the development and characterization of a novel large animal model of HFpEF in older, female sheep with chronic 2-kidney, 1-clip hypertension. At six weeks post-unilateral renal artery clipping, hypertensive HFpEF sheep had higher mean arterial pressure compared to similarly aged ewes without unilateral renal artery clipping (mean arterial pressure = 112.7±15.9 vs 76.0±10.1 mmHg, <i>P</i> < 0.0001). The hypertensive HFpEF sheep were characterized by (i) echocardiographic evidence of diastolic dysfunction (lateral e' = 0.11±0.02 vs 0.14±0.04 m/s, <i>P</i> = 0.011; lateral E/e' = 4.25±0.77 vs 3.63±0.54, <i>P</i> = 0.028) and concentric left ventricular hypertrophy without overt systolic impairment, (ii) elevated directly measured left ventricular end-diastolic pressure (13±5 vs 0.5±1 mmHg, <i>P</i> = 2.1x10<sup>-6</sup>), and (iii) normal directly measured cardiac output. Crucially, these hypertensive HFpEF sheep had impaired exercise capacity as demonstrated by their (i) attenuated cardiac output (<i>P</i> = 0.001), (ii) augmented pulmonary capillary wedge pressure (<i>P</i> = 0.026), and (iii) attenuated hindlimb blood flow (<i>P</i> = 3.4x10<sup>-4</sup>) responses, during graded treadmill exercise testing. In addition, exercise renal blood flow responses were also altered. Collectively, our data indicates that this novel ovine model of HFpEF may be a useful translational research tool since it exhibits similar and clinically relevant impairments as that of HFpEF patients.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00548.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The lack of animal models which accurately represent heart failure with preserved ejection fraction (HFpEF) has been a major barrier to the mechanistic understanding and development of effective therapies for this prevalent and debilitating syndrome characterized by multisystem impairments. Herein, we describe the development and characterization of a novel large animal model of HFpEF in older, female sheep with chronic 2-kidney, 1-clip hypertension. At six weeks post-unilateral renal artery clipping, hypertensive HFpEF sheep had higher mean arterial pressure compared to similarly aged ewes without unilateral renal artery clipping (mean arterial pressure = 112.7±15.9 vs 76.0±10.1 mmHg, P < 0.0001). The hypertensive HFpEF sheep were characterized by (i) echocardiographic evidence of diastolic dysfunction (lateral e' = 0.11±0.02 vs 0.14±0.04 m/s, P = 0.011; lateral E/e' = 4.25±0.77 vs 3.63±0.54, P = 0.028) and concentric left ventricular hypertrophy without overt systolic impairment, (ii) elevated directly measured left ventricular end-diastolic pressure (13±5 vs 0.5±1 mmHg, P = 2.1x10-6), and (iii) normal directly measured cardiac output. Crucially, these hypertensive HFpEF sheep had impaired exercise capacity as demonstrated by their (i) attenuated cardiac output (P = 0.001), (ii) augmented pulmonary capillary wedge pressure (P = 0.026), and (iii) attenuated hindlimb blood flow (P = 3.4x10-4) responses, during graded treadmill exercise testing. In addition, exercise renal blood flow responses were also altered. Collectively, our data indicates that this novel ovine model of HFpEF may be a useful translational research tool since it exhibits similar and clinically relevant impairments as that of HFpEF patients.
期刊介绍:
The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.