Adam K Bosen, Peter A Wasiuk, Lauren Calandruccio, Emily Buss
{"title":"Frequency importance for sentence recognition in co-located noise, co-located speech, and spatially separated speech.","authors":"Adam K Bosen, Peter A Wasiuk, Lauren Calandruccio, Emily Buss","doi":"10.1121/10.0034412","DOIUrl":null,"url":null,"abstract":"<p><p>Frequency importance functions quantify the contribution of spectral frequencies to perception. Frequency importance has been well-characterized for speech recognition in quiet and steady-state noise. However, it is currently unknown whether frequency importance estimates generalize to more complex conditions such as listening in a multi-talker masker or when targets and maskers are spatially separated. Here, frequency importance was estimated by quantifying associations between local target-to-masker ratios at the output of an auditory filterbank and keyword recognition accuracy for sentences. Unlike traditional methods used to measure frequency importance, this technique estimates frequency importance without modifying the acoustic properties of the target or masker. Frequency importance was compared across sentences in noise and a two-talker masker, as well as sentences in a two-talker masker that was either co-located with or spatially separated from the target. Results indicate that frequency importance depends on masker type and spatial configuration. Frequencies above 5 kHz had lower importance and frequencies between 600 and 1900 Hz had higher importance in the presence of a two-talker masker relative to a noise masker. Spatial separation increased the importance of frequencies between 600 Hz and 5 kHz. Thus, frequency importance functions vary across listening conditions.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 5","pages":"3275-3284"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034412","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Frequency importance functions quantify the contribution of spectral frequencies to perception. Frequency importance has been well-characterized for speech recognition in quiet and steady-state noise. However, it is currently unknown whether frequency importance estimates generalize to more complex conditions such as listening in a multi-talker masker or when targets and maskers are spatially separated. Here, frequency importance was estimated by quantifying associations between local target-to-masker ratios at the output of an auditory filterbank and keyword recognition accuracy for sentences. Unlike traditional methods used to measure frequency importance, this technique estimates frequency importance without modifying the acoustic properties of the target or masker. Frequency importance was compared across sentences in noise and a two-talker masker, as well as sentences in a two-talker masker that was either co-located with or spatially separated from the target. Results indicate that frequency importance depends on masker type and spatial configuration. Frequencies above 5 kHz had lower importance and frequencies between 600 and 1900 Hz had higher importance in the presence of a two-talker masker relative to a noise masker. Spatial separation increased the importance of frequencies between 600 Hz and 5 kHz. Thus, frequency importance functions vary across listening conditions.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.