Matilde Durán-Lobato, Sulay Tovar, Juan Cuñarro, Rocío Ramos-Membrive, Iván Peñuelas, Ilaria Marigo, Federico Benetti, Miguel Chenlo, Clara V Álvarez, Vashegyi Ildikó, Rudolf Urbanics, János Szebeni, María José Alonso
{"title":"Bioinspired orthogonal-shaped protein-biometal nanocrystals enable oral protein absorption.","authors":"Matilde Durán-Lobato, Sulay Tovar, Juan Cuñarro, Rocío Ramos-Membrive, Iván Peñuelas, Ilaria Marigo, Federico Benetti, Miguel Chenlo, Clara V Álvarez, Vashegyi Ildikó, Rudolf Urbanics, János Szebeni, María José Alonso","doi":"10.1016/j.jconrel.2024.11.016","DOIUrl":null,"url":null,"abstract":"<p><p>With the growing number of marketed biological drugs, the development of technological strategies for their oral systemic absorption, becomes increasingly important. The harsh gastrointestinal environment and low permeability of the intestinal epithelium, represent a huge challenge for their systemic delivery. Herein, bioinspired in the physiological insulin-Zn interaction, the design of orthogonal-shaped protein-biometal hybrid nanocrystals, further enveloped by a bilayer of functional biomaterials, is reported. The nanocrystals exhibited a size of 80 nm, a neutral surface charge and a high insulin loading. In vitro studies showed the capacity of the nanocomplexes to control the release of the associated insulin, while preserving its stability. In vivo evaluation showed sustained blood glucose reductions in both healthy and diabetic rats (up to 40 % and 80 %, respectively), while chronic immunotoxicity studies in mice indicated no toxicity effect. Preliminary efficacy studies in healthy awake pigs following oral capsule administration showed over 20 % absolute bioavailability.</p>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2024.11.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing number of marketed biological drugs, the development of technological strategies for their oral systemic absorption, becomes increasingly important. The harsh gastrointestinal environment and low permeability of the intestinal epithelium, represent a huge challenge for their systemic delivery. Herein, bioinspired in the physiological insulin-Zn interaction, the design of orthogonal-shaped protein-biometal hybrid nanocrystals, further enveloped by a bilayer of functional biomaterials, is reported. The nanocrystals exhibited a size of 80 nm, a neutral surface charge and a high insulin loading. In vitro studies showed the capacity of the nanocomplexes to control the release of the associated insulin, while preserving its stability. In vivo evaluation showed sustained blood glucose reductions in both healthy and diabetic rats (up to 40 % and 80 %, respectively), while chronic immunotoxicity studies in mice indicated no toxicity effect. Preliminary efficacy studies in healthy awake pigs following oral capsule administration showed over 20 % absolute bioavailability.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.