Nuclear PD-L1 compartmentalization suppresses tumorigenesis and overcomes immunocheckpoint therapy resistance in mice via histone macroH2A1.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2024-11-15 DOI:10.1172/JCI181314
Yong Liu, Zhi Yang, Shuanglian Wang, Rui Miao, Chiung-Wen Mary Chang, Jingyu Zhang, Xin Zhang, Mien-Chie Hung, Junwei Hou
{"title":"Nuclear PD-L1 compartmentalization suppresses tumorigenesis and overcomes immunocheckpoint therapy resistance in mice via histone macroH2A1.","authors":"Yong Liu, Zhi Yang, Shuanglian Wang, Rui Miao, Chiung-Wen Mary Chang, Jingyu Zhang, Xin Zhang, Mien-Chie Hung, Junwei Hou","doi":"10.1172/JCI181314","DOIUrl":null,"url":null,"abstract":"<p><p>Canonically PD-L1 functions as the inhibitory immune checkpoint on cell surface. Recent studies have observed PD-L1 expression in the nucleus of cancer cells. But the biological function of nuclear PD-L1 (nPD-L1) in tumor growth and antitumor immunity is unclear. Here we enforced nPD-L1 expression and established stable cells. nPD-L1 suppressed tumorigenesis and aggressiveness in vitro and in vivo. Compared with PD-L1 deletion, nPD-L1 expression repressed tumor growth and improved survival more markedly in immunocompetent mice. Phosphorylated AMPKα (p-AMPKα) facilitated nuclear PD-L1 compartmentalization and then cooperated with it to directly phosphorylate S146 of histone variant macroH2A1 (mH2A1) to epigenetically activate expression of genes of cellular senescence, JAK/STAT, and Hippo signaling pathways. Lipoic acid (LA) that induced nuclear PD-L1 translocation suppressed tumorigenesis and boosted antitumor immunity. Importantly, LA treatment synergized with PD-1 antibody and overcame immune checkpoint blockade (ICB) resistance, which likely resulted from nPD-L1-increased MHC-I expression and sensitivity of tumor cells to interferon-γ. These findings offer a conceptual advance for PD-L1 function and suggest LA as a promising therapeutic option for overcoming ICB resistance.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 22","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI181314","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Canonically PD-L1 functions as the inhibitory immune checkpoint on cell surface. Recent studies have observed PD-L1 expression in the nucleus of cancer cells. But the biological function of nuclear PD-L1 (nPD-L1) in tumor growth and antitumor immunity is unclear. Here we enforced nPD-L1 expression and established stable cells. nPD-L1 suppressed tumorigenesis and aggressiveness in vitro and in vivo. Compared with PD-L1 deletion, nPD-L1 expression repressed tumor growth and improved survival more markedly in immunocompetent mice. Phosphorylated AMPKα (p-AMPKα) facilitated nuclear PD-L1 compartmentalization and then cooperated with it to directly phosphorylate S146 of histone variant macroH2A1 (mH2A1) to epigenetically activate expression of genes of cellular senescence, JAK/STAT, and Hippo signaling pathways. Lipoic acid (LA) that induced nuclear PD-L1 translocation suppressed tumorigenesis and boosted antitumor immunity. Importantly, LA treatment synergized with PD-1 antibody and overcame immune checkpoint blockade (ICB) resistance, which likely resulted from nPD-L1-increased MHC-I expression and sensitivity of tumor cells to interferon-γ. These findings offer a conceptual advance for PD-L1 function and suggest LA as a promising therapeutic option for overcoming ICB resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核PD-L1分区通过组蛋白宏H2A1抑制小鼠的肿瘤发生并克服免疫检查点疗法的耐药性。
PD-L1 通常是细胞表面的抑制性免疫检查点。最近的研究观察到 PD-L1 在癌细胞的细胞核中表达。但是核PD-L1(nPD-L1)在肿瘤生长和抗肿瘤免疫中的生物学功能尚不清楚。在这里,我们强化了 nPD-L1 的表达并建立了稳定的细胞。nPD-L1 在体外和体内都抑制了肿瘤的发生和侵袭性。与 PD-L1 基因缺失相比,nPD-L1 的表达能更明显地抑制肿瘤生长并提高免疫功能正常小鼠的存活率。磷酸化的AMPKα(p-AMPKα)促进了PD-L1的核分区,然后与其合作直接磷酸化组蛋白变体macroH2A1(mH2A1)的S146,从而表观遗传地激活细胞衰老、JAK/STAT和Hippo信号通路基因的表达。诱导核PD-L1转位的硫辛酸(LA)可抑制肿瘤发生并增强抗肿瘤免疫力。重要的是,硫辛酸治疗与PD-1抗体协同作用,克服了免疫检查点阻断(ICB)的耐药性,这可能是由于nPD-L1增加了MHC-I的表达和肿瘤细胞对干扰素-γ的敏感性。这些发现为 PD-L1 的功能提供了概念上的进步,并建议将 LA 作为克服 ICB 抗性的一种有前途的治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
An Activin Receptor-Like Kinase 1-governed monocytic lineage shapes an immunosuppressive landscape in breast cancer metastases. TRAIL agonists rescue mice from radiation-induced lung, skin or esophageal injury. Impaired hydrogen sulfide biosynthesis underlies eccentric contraction-induced force loss in dystrophin-deficient skeletal muscle. LIN28B-mediated PI3K/AKT pathway activation promotes metastasis in colorectal cancer models. PDGFRα inhibition reduces myofibroblast expansion in the fibrotic rim and enhances recovery after ischemic stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1