{"title":"The lung is a megakaryocyte outpost that can defend against thrombocytopenic attack.","authors":"Anthony K Yeung, George J Murphy","doi":"10.1172/JCI186111","DOIUrl":null,"url":null,"abstract":"<p><p>Lung megakaryocytes (Mks) are a unique subset of Mks that are distinct from their bone marrow counterparts. Recent evidence suggests that lung Mks favor an immune phenotype, but have unclear contributions to the total platelet mass. In this issue of the JCI, Livada et al. used an array of complementary in vivo labeling and tracing models in mice to investigate a longstanding question of where lung Mks are derived. By combining these models with stressed conditions, the authors assessed the contribution of lung Mks to total platelet counts in a homeostatic and thrombocytopenic state. Mks were minor contributors to the circulating pool of platelets during homeostasis but increased output during thrombocytopenia. These findings add critical understanding to the development of lung Mks and demonstrate the dynamic potential of these specialized cells to respond to thrombocytopenia.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 22","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563664/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI186111","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lung megakaryocytes (Mks) are a unique subset of Mks that are distinct from their bone marrow counterparts. Recent evidence suggests that lung Mks favor an immune phenotype, but have unclear contributions to the total platelet mass. In this issue of the JCI, Livada et al. used an array of complementary in vivo labeling and tracing models in mice to investigate a longstanding question of where lung Mks are derived. By combining these models with stressed conditions, the authors assessed the contribution of lung Mks to total platelet counts in a homeostatic and thrombocytopenic state. Mks were minor contributors to the circulating pool of platelets during homeostasis but increased output during thrombocytopenia. These findings add critical understanding to the development of lung Mks and demonstrate the dynamic potential of these specialized cells to respond to thrombocytopenia.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.