Prognostic model development using novel genetic signature associated with adenosine metabolism and immune status for patients with hepatocellular carcinoma.

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of physiology and biochemistry Pub Date : 2024-11-15 DOI:10.1007/s13105-024-01061-8
Yidan Chen, Kemei Wang, Xingyun Zhang, Dongying Tao, Yulong Shang, Ping Wang, Qiang Li, Yansheng Liu
{"title":"Prognostic model development using novel genetic signature associated with adenosine metabolism and immune status for patients with hepatocellular carcinoma.","authors":"Yidan Chen, Kemei Wang, Xingyun Zhang, Dongying Tao, Yulong Shang, Ping Wang, Qiang Li, Yansheng Liu","doi":"10.1007/s13105-024-01061-8","DOIUrl":null,"url":null,"abstract":"<p><p>The high mortality rate of hepatocellular carcinoma (HCC) is partly due to advanced diagnosis, emphasizing the need for effective predictive tools in HCC treatment. The aim of this study is to propose a novel prognostic model for HCC based on adenosine metabolizing genes and explore the potential relationship between them. Regression analysis was performed to identify differentially expressed genes associated with adenosine metabolism in HCC patients using RNA sequencing data obtained from a public database. Adenosine metabolism-related risk score (AMrisk) was derived using the least absolute shrinkage and selection operator (LASSO) Cox regression and verified using another database. Changes in adenosine metabolism in HCC were analyzed using functional enrichment analysis and multiple immune scores. The gene expression levels in patient samples were validated using quantitative reverse transcription polymerase chain reaction. Thirty adenosine metabolism-related differentially expressed genes were identified in HCC, and six genes (ADA, P2RY4, P2RY6, RPIA, SLC6A3, and VEGFA) were used to calculate the AMrisk score; the higher the risk scores, the lower the overall survival. Moreover, immune infiltration activation and immune checkpoints were considerably higher in the high-risk group. Additional in vitro experiments validated the enhanced expression of these six genes in HCC. The established predictive model demonstrated that adenosine metabolism-related genes was significantly associated with prognosis in HCC patients.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-024-01061-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The high mortality rate of hepatocellular carcinoma (HCC) is partly due to advanced diagnosis, emphasizing the need for effective predictive tools in HCC treatment. The aim of this study is to propose a novel prognostic model for HCC based on adenosine metabolizing genes and explore the potential relationship between them. Regression analysis was performed to identify differentially expressed genes associated with adenosine metabolism in HCC patients using RNA sequencing data obtained from a public database. Adenosine metabolism-related risk score (AMrisk) was derived using the least absolute shrinkage and selection operator (LASSO) Cox regression and verified using another database. Changes in adenosine metabolism in HCC were analyzed using functional enrichment analysis and multiple immune scores. The gene expression levels in patient samples were validated using quantitative reverse transcription polymerase chain reaction. Thirty adenosine metabolism-related differentially expressed genes were identified in HCC, and six genes (ADA, P2RY4, P2RY6, RPIA, SLC6A3, and VEGFA) were used to calculate the AMrisk score; the higher the risk scores, the lower the overall survival. Moreover, immune infiltration activation and immune checkpoints were considerably higher in the high-risk group. Additional in vitro experiments validated the enhanced expression of these six genes in HCC. The established predictive model demonstrated that adenosine metabolism-related genes was significantly associated with prognosis in HCC patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用与腺苷代谢和免疫状态相关的新型基因特征,为肝细胞癌患者建立预后模型。
肝细胞癌(HCC)的高死亡率部分归因于晚期诊断,这强调了在 HCC 治疗中需要有效的预测工具。本研究的目的是根据腺苷代谢基因提出一种新型的 HCC 预后模型,并探索它们之间的潜在关系。利用从公共数据库中获得的 RNA 测序数据进行回归分析,以确定 HCC 患者中与腺苷代谢相关的差异表达基因。腺苷代谢相关风险评分(AMrisk)是通过最小绝对收缩和选择算子(LASSO)Cox回归得出的,并通过另一个数据库进行了验证。利用功能富集分析和多重免疫评分分析了 HCC 中腺苷代谢的变化。使用定量反转录聚合酶链反应验证了患者样本中的基因表达水平。结果发现,HCC中有30个腺苷代谢相关的差异表达基因,其中6个基因(ADA、P2RY4、P2RY6、RPIA、SLC6A3和VEGFA)被用于计算AMrisk评分;风险评分越高,总生存率越低。此外,高风险组的免疫浸润活化和免疫检查点明显更高。其他体外实验验证了这六个基因在 HCC 中的表达增强。已建立的预测模型表明,腺苷代谢相关基因与 HCC 患者的预后有显著相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of physiology and biochemistry
Journal of physiology and biochemistry 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.
期刊最新文献
The importance of growth differentiation factor 15 and interleukin 6 serum levels in inflammatory bowel diseases. Prognostic model development using novel genetic signature associated with adenosine metabolism and immune status for patients with hepatocellular carcinoma. Histone demethylase JMJD1C advances macrophage foam cell formation and atherosclerosis progression by promoting the transcription of PCSK9. Apelin/APJ signaling in IGF-1-induced acute mitochondrial and antioxidant effects in spontaneously hypertensive rat myocardium. TAF15 inhibits p53 nucleus translocation and promotes HCC cell 5-FU resistance via post-transcriptional regulation of UBE2N.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1