Serum proteomics identifies biomarkers for predicting non-survivors in elderly COVID-19 patients.

IF 2.8 2区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of proteomics Pub Date : 2024-11-13 DOI:10.1016/j.jprot.2024.105356
Lin Wang, Wenmin Tian, Sen Wang, Yuhong Liu, Hongli Wang, Junjie Xiao, Zhongkuo Yu, Lixin Xie, Yang Chen
{"title":"Serum proteomics identifies biomarkers for predicting non-survivors in elderly COVID-19 patients.","authors":"Lin Wang, Wenmin Tian, Sen Wang, Yuhong Liu, Hongli Wang, Junjie Xiao, Zhongkuo Yu, Lixin Xie, Yang Chen","doi":"10.1016/j.jprot.2024.105356","DOIUrl":null,"url":null,"abstract":"<p><p>In December 2022, China ceased the zero-COVID-19 policy, resulting in an increase in hospitalizations and deaths due to COVID-19, particularly among the elderly population. Predicting non-survivors aims to identify high-risk patients and enable targeted interventions to improve survival rates. Additionally, understanding factors affecting prognosis provides essential insights for further research and optimization of treatment strategies. We applied 4D-DIA mass spectrometry for serum proteome analysis and provided a comprehensive characterization of disease features in elderly patients within the Chinese population. Our study elucidated that immune disorders, lung damage, and cardiovascular disorders are predominant causes of death in these patients. Compared to clinical indices, proteomic analysis is more sensitive in tracing these disorders. We also provided a prediction panel for survival outcomes of elderly patients using levels of CXCL10, CXCL16 and IL1RA, which were validated by ELISA. These biomarkers will help improve predictive efficacy for survival outcomes in elderly patients.</p>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":" ","pages":"105356"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jprot.2024.105356","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In December 2022, China ceased the zero-COVID-19 policy, resulting in an increase in hospitalizations and deaths due to COVID-19, particularly among the elderly population. Predicting non-survivors aims to identify high-risk patients and enable targeted interventions to improve survival rates. Additionally, understanding factors affecting prognosis provides essential insights for further research and optimization of treatment strategies. We applied 4D-DIA mass spectrometry for serum proteome analysis and provided a comprehensive characterization of disease features in elderly patients within the Chinese population. Our study elucidated that immune disorders, lung damage, and cardiovascular disorders are predominant causes of death in these patients. Compared to clinical indices, proteomic analysis is more sensitive in tracing these disorders. We also provided a prediction panel for survival outcomes of elderly patients using levels of CXCL10, CXCL16 and IL1RA, which were validated by ELISA. These biomarkers will help improve predictive efficacy for survival outcomes in elderly patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血清蛋白质组学确定了预测 COVID-19 老年患者非存活者的生物标志物。
2022 年 12 月,中国停止了 COVID-19 零政策,导致 COVID-19 引起的住院和死亡人数增加,尤其是在老年人群中。预测非存活患者的目的是识别高危患者,并采取有针对性的干预措施以提高存活率。此外,了解影响预后的因素还能为进一步研究和优化治疗策略提供重要启示。我们应用 4D-DIA 质谱技术进行血清蛋白质组分析,全面描述了中国老年患者的疾病特征。我们的研究阐明,免疫紊乱、肺损伤和心血管疾病是这些患者的主要死因。与临床指标相比,蛋白质组分析在追踪这些疾病方面更为敏感。我们还利用 CXCL10、CXCL16 和 IL1RA 的水平为老年患者的生存结果提供了一个预测面板,并通过 ELISA 进行了验证。这些生物标志物将有助于提高对老年患者生存结果的预测效力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of proteomics
Journal of proteomics 生物-生化研究方法
CiteScore
7.10
自引率
3.00%
发文量
227
审稿时长
73 days
期刊介绍: Journal of Proteomics is aimed at protein scientists and analytical chemists in the field of proteomics, biomarker discovery, protein analytics, plant proteomics, microbial and animal proteomics, human studies, tissue imaging by mass spectrometry, non-conventional and non-model organism proteomics, and protein bioinformatics. The journal welcomes papers in new and upcoming areas such as metabolomics, genomics, systems biology, toxicogenomics, pharmacoproteomics. Journal of Proteomics unifies both fundamental scientists and clinicians, and includes translational research. Suggestions for reviews, webinars and thematic issues are welcome.
期刊最新文献
Validation of urine p-cresol glucuronide as renal cell carcinoma non-invasive biomarker. An integrated proteomic and phosphoproteomic landscape of chronic kidney disease Serum proteomics identifies biomarkers for predicting non-survivors in elderly COVID-19 patients. Editorial Board Decellularized extracellular matrix from bovine ovarian tissue maintains the protein composition of the native matrisome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1