{"title":"Sodium Danshensu Inhibits Macrophage Inflammation in Atherosclerosis via the miR-200a-3p/MEKK3/NF-κB Signaling Pathway.","authors":"Xiaolu Zhang, Yilin Zhang, Miao Zeng, Qun Yu, Jiali Gan, Yijing Wang, Xijuan Jiang","doi":"10.1007/s12035-024-04626-2","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are fundamental cellular components of atherosclerotic plaques, and inhibition of macrophage inflammation can delay the development of atherosclerotic plaques. Sodium danshensu (SDSS) can inhibit inflammatory responses and thus delay atherosclerosis, but the specific mechanism remains unclear. The effect of SDSS in inhibiting atherosclerosis was confirmed by observing and detecting atherosclerotic plaque area, morphology and lipid levels in the aorta. The mechanism by which SDSS attenuated atherosclerotic plaques was elucidated by in vivo and in vitro detection of inflammation-related mRNA and protein expression. In addition, bioinformatics analysis, RT-qPCR and dual-luciferase assays were used to predict and validate the potential miRNAs of SDSS to attenuate atherosclerosis. miR-200a-2p mimic and inhibitor were then compared for their effects on the efficacy of SDSS. SDSS inhibited atherosclerotic plaque formation and suppressed the expression of MEKK3, TNF-α, and IL-1β as well as nuclear factor-κB (NF-κB) phosphorylation and nuclear translocation to attenuate inflammatory responses. Bioinformatic predictions combined with RT-qPCR results and dual-luciferase assays indicated that miR-200a-3p negatively regulated MEKK3 expression by directly targeting the 3'UTR region of MEKK3, thereby blocking MEKK3. Further studies showed that miR-200a-3p inhibitor, but not miR-200a-3p mimic, reversed the beneficial effects of SDSS on inflammation. SDSS inhibited macrophage inflammation by modulating the miR-200a-3p/MEKK3/NF-κB signaling pathway.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04626-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Macrophages are fundamental cellular components of atherosclerotic plaques, and inhibition of macrophage inflammation can delay the development of atherosclerotic plaques. Sodium danshensu (SDSS) can inhibit inflammatory responses and thus delay atherosclerosis, but the specific mechanism remains unclear. The effect of SDSS in inhibiting atherosclerosis was confirmed by observing and detecting atherosclerotic plaque area, morphology and lipid levels in the aorta. The mechanism by which SDSS attenuated atherosclerotic plaques was elucidated by in vivo and in vitro detection of inflammation-related mRNA and protein expression. In addition, bioinformatics analysis, RT-qPCR and dual-luciferase assays were used to predict and validate the potential miRNAs of SDSS to attenuate atherosclerosis. miR-200a-2p mimic and inhibitor were then compared for their effects on the efficacy of SDSS. SDSS inhibited atherosclerotic plaque formation and suppressed the expression of MEKK3, TNF-α, and IL-1β as well as nuclear factor-κB (NF-κB) phosphorylation and nuclear translocation to attenuate inflammatory responses. Bioinformatic predictions combined with RT-qPCR results and dual-luciferase assays indicated that miR-200a-3p negatively regulated MEKK3 expression by directly targeting the 3'UTR region of MEKK3, thereby blocking MEKK3. Further studies showed that miR-200a-3p inhibitor, but not miR-200a-3p mimic, reversed the beneficial effects of SDSS on inflammation. SDSS inhibited macrophage inflammation by modulating the miR-200a-3p/MEKK3/NF-κB signaling pathway.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.