Using High-Pass Filter to Enhance Scan Specific Learning for MRI Reconstruction without Any Extra Training Data.

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2024-11-14 DOI:10.1016/j.neuroimage.2024.120926
Zhaoyang Jin, Jiuwen Cao, Mei Zhang, Qing-San Xiang
{"title":"Using High-Pass Filter to Enhance Scan Specific Learning for MRI Reconstruction without Any Extra Training Data.","authors":"Zhaoyang Jin, Jiuwen Cao, Mei Zhang, Qing-San Xiang","doi":"10.1016/j.neuroimage.2024.120926","DOIUrl":null,"url":null,"abstract":"<p><p>In accelerated MRI, the robust artificial-neural-network for k-space interpolation (RAKI) method is an attractive learning-based reconstruction that does not require additional training data. This study was focused on obtaining high quality MR images from regular under-sampled multi-coil k-space data using a high-pass filtered RAKI (HP-RAKI) reconstruction without any extra training data. MRI scan from human subjects was under-sampled with a regular pattern using skipped phase encoding and a fully sampled k-space center. A high-pass (HP) filter was applied in k-space to reduce image support to facilitate linear prediction. The HP filtered k-space center was used to train the RAKI network without any extra training data. The unacquired k-space data can be predicted from a trained RAKI network with optimized parameters. Final reconstruction was obtained after performing an inverse HP filtering for the predicted k-space data. This HP-RAKI method can be extended to corresponding residual structure (HP-rRAKI). HP-RAKI was compared with GRAPPA, HP-GRAPPA, RAKI and MW-RAKI algorithms, and HP-rRAKI was compared with corresponding residual extensions, including rRAKI and MW-rRAKI, all qualitatively and quantitatively using visual inspection and such metrics as SSIM and PSNR. HP-RAKI and HP-rRAKI were found to be effective in reconstructing MR images even at high acceleration factors. HP-RAKI and HP-rRAKI compared favorably with other algorithms. Using high-pass filtered central k-space data for training, HP-RAKI offers higher reconstruction quality for regularly under-sampled multi-coil k-space data without any extra training data. It has shown promising capabilities for fast MRI applications, especially those lacking fully sampled training data.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"120926"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2024.120926","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

In accelerated MRI, the robust artificial-neural-network for k-space interpolation (RAKI) method is an attractive learning-based reconstruction that does not require additional training data. This study was focused on obtaining high quality MR images from regular under-sampled multi-coil k-space data using a high-pass filtered RAKI (HP-RAKI) reconstruction without any extra training data. MRI scan from human subjects was under-sampled with a regular pattern using skipped phase encoding and a fully sampled k-space center. A high-pass (HP) filter was applied in k-space to reduce image support to facilitate linear prediction. The HP filtered k-space center was used to train the RAKI network without any extra training data. The unacquired k-space data can be predicted from a trained RAKI network with optimized parameters. Final reconstruction was obtained after performing an inverse HP filtering for the predicted k-space data. This HP-RAKI method can be extended to corresponding residual structure (HP-rRAKI). HP-RAKI was compared with GRAPPA, HP-GRAPPA, RAKI and MW-RAKI algorithms, and HP-rRAKI was compared with corresponding residual extensions, including rRAKI and MW-rRAKI, all qualitatively and quantitatively using visual inspection and such metrics as SSIM and PSNR. HP-RAKI and HP-rRAKI were found to be effective in reconstructing MR images even at high acceleration factors. HP-RAKI and HP-rRAKI compared favorably with other algorithms. Using high-pass filtered central k-space data for training, HP-RAKI offers higher reconstruction quality for regularly under-sampled multi-coil k-space data without any extra training data. It has shown promising capabilities for fast MRI applications, especially those lacking fully sampled training data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高通滤波器加强磁共振成像重建的扫描特定学习,无需额外的训练数据。
在加速磁共振成像中,用于 k 空间插值的鲁棒人工神经网络(RAKI)方法是一种基于学习的重建方法,无需额外的训练数据。本研究的重点是利用高通滤波 RAKI(HP-RAKI)重建方法,在不需要任何额外训练数据的情况下,从常规欠采样多线圈 k 空间数据中获取高质量的 MR 图像。利用跳过相位编码和全采样 k 空间中心,以规则模式对人体磁共振成像扫描进行欠采样。在 k 空间中应用高通(HP)滤波器来减少图像支持,以促进线性预测。经 HP 滤波的 k 空间中心用于训练 RAKI 网络,无需任何额外的训练数据。未获取的 k 空间数据可以通过经过优化参数训练的 RAKI 网络进行预测。在对预测的 k 空间数据进行反 HP 滤波后,即可获得最终重建结果。这种 HP-RAKI 方法可以扩展到相应的残差结构(HP-RRAKI)。HP-RAKI 与 GRAPPA、HP-GRAPPA、RAKI 和 MW-RAKI 算法进行了比较,HP-rRAKI 与相应的残差扩展(包括 rRAKI 和 MW-rRAKI)进行了比较,所有这些都采用目视检查和 SSIM、PSNR 等指标进行定性和定量比较。结果发现,HP-RAKI 和 HP-rRAKI 即使在高加速因子下也能有效地重建 MR 图像。与其他算法相比,HP-RAKI 和 HP-rRAKI 更胜一筹。HP-RAKI 使用高通滤波中心 k 空间数据进行训练,无需额外的训练数据,就能为有规律的低采样多线圈 k 空间数据提供更高的重建质量。它在快速磁共振成像应用中,尤其是那些缺乏全采样训练数据的应用中,表现出了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Cerebellar representation during phonetic processing in tonal and non-tonal language speakers: An ALE meta-analysis. Deep learning applied to the segmentation of rodent brain MRI data outperforms noisy ground truth on full-fledged brain atlases. Development of A Novel Radioiodinated Compound for Amyloid and Tau Deposition imaging in Alzheimer's disease and Tauopathy Mouse Models. Investigating Unilateral and Bilateral Motor Imagery Control Using Electrocorticography and fMRI in Awake Craniotomy. Multiclass Classification of Alzheimer's Disease Prodromal Stages using Sequential Feature Embeddings and Regularized Multikernel Support Vector Machine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1