Guochao Duan , Xiubao Chen , Yiran Hou , Tao Jiang , Hongbo Liu , Jian Yang
{"title":"Combined transcriptome and metabolome analysis reveals the mechanism of high nitrite tolerance in freshwater mussel Anodonta woodiana","authors":"Guochao Duan , Xiubao Chen , Yiran Hou , Tao Jiang , Hongbo Liu , Jian Yang","doi":"10.1016/j.cbd.2024.101359","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrite contamination and stress on aquatic organisms are increasingly emphasized in freshwater ecosystems. Freshwater bivalves exhibit high tolerance to nitrite; however, the underlying mechanism is unknown. Accordingly, this study investigated the tolerance mechanism of the globally occurring freshwater bivalve <em>Anodonta woodiana</em>. <em>A. woodiana</em> were exposed to nominal concentrations of 0, 250, 500, 1000, 2000, and 4000 mg/L nitrite for 96 h to calculate the 96-h median lethal concentration (96-h LC<sub>50</sub>). A combined transcriptome and metabolome analysis of the hemolymph (the most vital component of the bivalve immune system) was performed after exposing <em>A. woodiana</em> to 300 mg/L nitrite (approximately half the 96-h LC<sub>50</sub>) for 96 h. The 96-h LC<sub>50</sub> of nitrite in <em>A. woodiana</em> was 618.7 mg/L. Transcriptome analysis identified 5600 differentially expressed genes (DEGs) primarily related to ribosomes, lysosomes, DNA replication, and nucleotide excision repair. Metabolome analysis identified 216 differentially expressed metabolites (DEMs) primarily involved in biosynthesis of amino acids, 2-oxocarboxylic acid metabolism, protein digestion and absorption, aminoacyl-tRNA biosynthesis, nucleotide metabolism, ABC transporters, and valine, leucine and isoleucine degradation. Combined transcriptome and metabolome analysis revealed that DEGs and DEMs were primarily associated with nucleotide (purine and pyrimidine) and amino acid metabolism (including aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, arginine and proline metabolism, and valine, leucine and isoleucine degradation) as well as the immune system (necroptosis and glutathione metabolism). This study is the first to describe the high tolerance of <em>A. woodiana</em> to nitrite and elucidate the molecular mechanisms underlying high nitrite tolerance in mussels.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"52 ","pages":"Article 101359"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X24001722","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrite contamination and stress on aquatic organisms are increasingly emphasized in freshwater ecosystems. Freshwater bivalves exhibit high tolerance to nitrite; however, the underlying mechanism is unknown. Accordingly, this study investigated the tolerance mechanism of the globally occurring freshwater bivalve Anodonta woodiana. A. woodiana were exposed to nominal concentrations of 0, 250, 500, 1000, 2000, and 4000 mg/L nitrite for 96 h to calculate the 96-h median lethal concentration (96-h LC50). A combined transcriptome and metabolome analysis of the hemolymph (the most vital component of the bivalve immune system) was performed after exposing A. woodiana to 300 mg/L nitrite (approximately half the 96-h LC50) for 96 h. The 96-h LC50 of nitrite in A. woodiana was 618.7 mg/L. Transcriptome analysis identified 5600 differentially expressed genes (DEGs) primarily related to ribosomes, lysosomes, DNA replication, and nucleotide excision repair. Metabolome analysis identified 216 differentially expressed metabolites (DEMs) primarily involved in biosynthesis of amino acids, 2-oxocarboxylic acid metabolism, protein digestion and absorption, aminoacyl-tRNA biosynthesis, nucleotide metabolism, ABC transporters, and valine, leucine and isoleucine degradation. Combined transcriptome and metabolome analysis revealed that DEGs and DEMs were primarily associated with nucleotide (purine and pyrimidine) and amino acid metabolism (including aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, arginine and proline metabolism, and valine, leucine and isoleucine degradation) as well as the immune system (necroptosis and glutathione metabolism). This study is the first to describe the high tolerance of A. woodiana to nitrite and elucidate the molecular mechanisms underlying high nitrite tolerance in mussels.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.