Samantha K. Walker, Brandon C. Stevenson, Evan H. Perez, Roland M. Jones III, David H. Loertscher, Amanda R. Bubas, Fan Yang, Talley A. Fenn, Giel Berden, Jonathan Martens, Jos Oomens and P. B. Armentrout*,
{"title":"Structure Determination of Zinc and Cadmium Dication Complexes with Intact and Deprotonated Histidyl Glycine and Glycyl Histidine Dipeptides","authors":"Samantha K. Walker, Brandon C. Stevenson, Evan H. Perez, Roland M. Jones III, David H. Loertscher, Amanda R. Bubas, Fan Yang, Talley A. Fenn, Giel Berden, Jonathan Martens, Jos Oomens and P. B. Armentrout*, ","doi":"10.1021/acs.jpcb.4c0630810.1021/acs.jpcb.4c06308","DOIUrl":null,"url":null,"abstract":"<p >Metalated intact and deprotonated histidyl glycine and glycyl histidine dipeptides were investigated in the gas phase by using infrared multiple photon dissociation (IRMPD) spectroscopy with light from a free-electron laser (FEL). The dipeptides M<sup>2+</sup>(GlyHis), M<sup>2+</sup>(HisGly), [M(GlyHis-H)]<sup>+</sup>, and [M(HisGly-H)]<sup>+</sup>, where M = Zn and Cd, were probed to elucidate how the His position along the peptide chain and ligand charge state might influence the structures observed in the gas phase. Simulated annealing calculations were performed to determine energetically low-lying conformers and isomers of these structures. Quantum chemical calculations were used to optimize the structures at the B3LYP level of theory using the 6-311+G(d,p) and def2-TZVP basis sets for zinc and cadmium complexes, respectively. IRMPD and calculated linear absorption spectra were compared to evaluate which structures are present. Relative energies of the various species were evaluated using single-point energy calculations for low-lying structures at the B3LYP, B3LYP-GD3BJ, ωB97XD, and MP2(full) levels using the 6-311+G(2d,2p) and def2-TZVPP basis sets. For all species, structures for both metals mirror each other, and those that reproduce the experimental spectrum were determined to be iminol structures for the intact ligands or iminol-like structures for the deprotonated ligands. Additionally, when the spectra of the deprotonated dipeptides are compared to the intact dipeptides, the change in the spectra is correlated to the group that is deprotonated.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"128 45","pages":"11134–11143 11134–11143"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.4c06308","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metalated intact and deprotonated histidyl glycine and glycyl histidine dipeptides were investigated in the gas phase by using infrared multiple photon dissociation (IRMPD) spectroscopy with light from a free-electron laser (FEL). The dipeptides M2+(GlyHis), M2+(HisGly), [M(GlyHis-H)]+, and [M(HisGly-H)]+, where M = Zn and Cd, were probed to elucidate how the His position along the peptide chain and ligand charge state might influence the structures observed in the gas phase. Simulated annealing calculations were performed to determine energetically low-lying conformers and isomers of these structures. Quantum chemical calculations were used to optimize the structures at the B3LYP level of theory using the 6-311+G(d,p) and def2-TZVP basis sets for zinc and cadmium complexes, respectively. IRMPD and calculated linear absorption spectra were compared to evaluate which structures are present. Relative energies of the various species were evaluated using single-point energy calculations for low-lying structures at the B3LYP, B3LYP-GD3BJ, ωB97XD, and MP2(full) levels using the 6-311+G(2d,2p) and def2-TZVPP basis sets. For all species, structures for both metals mirror each other, and those that reproduce the experimental spectrum were determined to be iminol structures for the intact ligands or iminol-like structures for the deprotonated ligands. Additionally, when the spectra of the deprotonated dipeptides are compared to the intact dipeptides, the change in the spectra is correlated to the group that is deprotonated.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.