Lars K. Lindsø, Hildegunn Viljugrein, Atle Mysterud
{"title":"Temporal increase in ticks and pathogen prevalence in the small mammal part of the Lyme disease cycle in northern Europe","authors":"Lars K. Lindsø, Hildegunn Viljugrein, Atle Mysterud","doi":"10.1002/ecs2.70063","DOIUrl":null,"url":null,"abstract":"<p>Lyme disease is an emerging infectious disease and the most common vector-borne zoonosis in the northern hemisphere. The pathogen that causes Lyme disease in Europe is vectored by the generalist tick <i>Ixodes ricinus</i>, and the emergence of Lyme disease is partly linked to how climate warming affects tick distribution and abundance. However, we lack long-term data on tick infestations and infection prevalence in the main hosts involved in the transmission cycle. Here, we quantified the temporal trends (2014–2022) of <i>I. ricinus</i> infestations and the prevalence of <i>Borrelia burgdorferi</i> sensu lato in small mammalian hosts and linked annual variation to host abundance and climate in Norway. We found that tick infestations for both larvae (21% per year [95% CI 18–25]) and nymphs (18% [11–26]), and infection prevalence (14% [8–20]) increased over the period and were negatively associated with rodent abundance. Additionally, warmer years were associated with increased larval tick infestations on hosts. The combination of a temporal increase in both larval tick infestation and infection prevalence in hosts likely results in increased production of infected nymphs. Thus, we provide one mechanistic step toward understanding the Lyme disease emergence at northern latitudes of Europe.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"15 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70063","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lyme disease is an emerging infectious disease and the most common vector-borne zoonosis in the northern hemisphere. The pathogen that causes Lyme disease in Europe is vectored by the generalist tick Ixodes ricinus, and the emergence of Lyme disease is partly linked to how climate warming affects tick distribution and abundance. However, we lack long-term data on tick infestations and infection prevalence in the main hosts involved in the transmission cycle. Here, we quantified the temporal trends (2014–2022) of I. ricinus infestations and the prevalence of Borrelia burgdorferi sensu lato in small mammalian hosts and linked annual variation to host abundance and climate in Norway. We found that tick infestations for both larvae (21% per year [95% CI 18–25]) and nymphs (18% [11–26]), and infection prevalence (14% [8–20]) increased over the period and were negatively associated with rodent abundance. Additionally, warmer years were associated with increased larval tick infestations on hosts. The combination of a temporal increase in both larval tick infestation and infection prevalence in hosts likely results in increased production of infected nymphs. Thus, we provide one mechanistic step toward understanding the Lyme disease emergence at northern latitudes of Europe.
期刊介绍:
The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.