A Multimodal Biometric Recognition Method Based on Federated Learning

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Biometrics Pub Date : 2024-11-08 DOI:10.1049/2024/5873909
Guang Chen, Dacan Luo, Fengzhao Lian, Feng Tian, Xu Yang, Wenxiong Kang
{"title":"A Multimodal Biometric Recognition Method Based on Federated Learning","authors":"Guang Chen,&nbsp;Dacan Luo,&nbsp;Fengzhao Lian,&nbsp;Feng Tian,&nbsp;Xu Yang,&nbsp;Wenxiong Kang","doi":"10.1049/2024/5873909","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Recently, multimodal authentication methods based on deep learning have been widely explored in biometrics. Nevertheless, the contradiction between the data privacy protection and the requirement of sufficient data when model optimizing has become increasingly prominent. To this end, we proposes a multimodal biometric federated learning framework (FedMB) to realize the multiparty joint training of identity authentication models with different modal data while protecting the users’ data privacy. Specifically, a personalized multimodal biometric recognition model fully trained by each participant is first obtained to improve the authentication performance, using modal point clustering with class-first federated learning methods on the service side with the modal. Then a complementary multimodal biometric recognition strategy is implemented to build a complementary modal model. Finally, the fusion participant local model, with the modal model and complementary modal model, is trained by all participants again to obtain a more personalized modal model. The experimental results have demonstrated that the proposed FedMB can either protect the data privacy or utilize the data from all participants to train the personalized biometric recognition model to improve identity authentication performance.</p>\n </div>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"2024 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5873909","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/5873909","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, multimodal authentication methods based on deep learning have been widely explored in biometrics. Nevertheless, the contradiction between the data privacy protection and the requirement of sufficient data when model optimizing has become increasingly prominent. To this end, we proposes a multimodal biometric federated learning framework (FedMB) to realize the multiparty joint training of identity authentication models with different modal data while protecting the users’ data privacy. Specifically, a personalized multimodal biometric recognition model fully trained by each participant is first obtained to improve the authentication performance, using modal point clustering with class-first federated learning methods on the service side with the modal. Then a complementary multimodal biometric recognition strategy is implemented to build a complementary modal model. Finally, the fusion participant local model, with the modal model and complementary modal model, is trained by all participants again to obtain a more personalized modal model. The experimental results have demonstrated that the proposed FedMB can either protect the data privacy or utilize the data from all participants to train the personalized biometric recognition model to improve identity authentication performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于联合学习的多模态生物识别方法
近年来,基于深度学习的多模态身份验证方法在生物识别领域得到了广泛探索。然而,在模型优化时,数据隐私保护与充足数据要求之间的矛盾日益突出。为此,我们提出了一种多模态生物识别联合学习框架(FedMB),在保护用户数据隐私的前提下,实现不同模态数据身份认证模型的多方联合训练。具体来说,首先在有模态的服务端使用模态点聚类与类优先联合学习方法,获得由每个参与者完全训练的个性化多模态生物识别模型,以提高身份验证性能。然后实施互补多模态生物识别策略,建立互补模态模型。最后,所有参与者再次训练模态模型和互补模态模型的融合参与者本地模型,以获得更加个性化的模态模型。实验结果表明,拟议的 FedMB 既能保护数据隐私,也能利用所有参与者的数据来训练个性化生物特征识别模型,从而提高身份验证性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
期刊最新文献
A Multimodal Biometric Recognition Method Based on Federated Learning Deep and Shallow Feature Fusion in Feature Score Level for Palmprint Recognition Research on TCN Model Based on SSARF Feature Selection in the Field of Human Behavior Recognition A Finger Vein Recognition Algorithm Based on the Histogram of Variable Curvature Directional Binary Statistics A Survey on Automatic Face Recognition Using Side-View Face Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1