{"title":"Microfluidization outperforms homogenization: Optimizing stability and bioaccessibility in krill oil emulsions","authors":"Jia-rong Huang, Jian-run Zhang, Jing Zhang, Zhen-wen Shao, Da-yong Zhou, Liang Song","doi":"10.1002/aocs.12900","DOIUrl":null,"url":null,"abstract":"<p>This research presents a rigorous comparative analysis of high-pressure homogenization (HPH) and microfluidization (MF) for the production of krill oil (KO) emulsions, scrutinizing their impact on oxidative stability, bioaccessibility, and the behavior under in vitro simulated digestion. Our findings revealed that MF emulsions possessed a distinct advantage, with a droplet size and distribution that promoted exceptional oxidative stability, evidenced by a sustained reduction in oxidative markers and enhanced retention of bioactive components, including EPA and DHA, and the potent antioxidant astaxanthin. In contrast, HPH yielded larger and less uniform particles, correlating with diminished stability. The in vitro digestion studies underscored the superior bioaccessibility of MF emulsions, with a pronounced release of free fatty acids during the intestinal phase, indicative of an optimized digestion and absorption process due to the smaller droplet size of the emulsions. The study's insights advocate for the adoption of microfluidization in the food industry for the development of advanced delivery systems for <i>n</i>-3 fatty acids, particularly in the context of KO-based products. The technique shows promise in enhancing the quality, stability, and bioavailability of these products, which are rich in health-promoting lipids. The microfluidization technique emerges as a promising avenue for the fortification of a diverse range of commercial food, beverage, and pharmaceutical products with lipids that contribute to health and wellness.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 11","pages":"1329-1339"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12900","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This research presents a rigorous comparative analysis of high-pressure homogenization (HPH) and microfluidization (MF) for the production of krill oil (KO) emulsions, scrutinizing their impact on oxidative stability, bioaccessibility, and the behavior under in vitro simulated digestion. Our findings revealed that MF emulsions possessed a distinct advantage, with a droplet size and distribution that promoted exceptional oxidative stability, evidenced by a sustained reduction in oxidative markers and enhanced retention of bioactive components, including EPA and DHA, and the potent antioxidant astaxanthin. In contrast, HPH yielded larger and less uniform particles, correlating with diminished stability. The in vitro digestion studies underscored the superior bioaccessibility of MF emulsions, with a pronounced release of free fatty acids during the intestinal phase, indicative of an optimized digestion and absorption process due to the smaller droplet size of the emulsions. The study's insights advocate for the adoption of microfluidization in the food industry for the development of advanced delivery systems for n-3 fatty acids, particularly in the context of KO-based products. The technique shows promise in enhancing the quality, stability, and bioavailability of these products, which are rich in health-promoting lipids. The microfluidization technique emerges as a promising avenue for the fortification of a diverse range of commercial food, beverage, and pharmaceutical products with lipids that contribute to health and wellness.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.