Classification of Single-Photon Emitters in Confocal Fluorescence Microscope Images by Deep Convolutional Neural Networks

IF 4.4 Q1 OPTICS Advanced quantum technologies Pub Date : 2024-09-27 DOI:10.1002/qute.202400173
Dongbeom Kim, Seoyoung Paik, Jeongeun Park, Seung-Jae Hwang, Shinobu Onoda, Takeshi Ohshima, Dong-Hee Kim, Sang-Yun Lee
{"title":"Classification of Single-Photon Emitters in Confocal Fluorescence Microscope Images by Deep Convolutional Neural Networks","authors":"Dongbeom Kim,&nbsp;Seoyoung Paik,&nbsp;Jeongeun Park,&nbsp;Seung-Jae Hwang,&nbsp;Shinobu Onoda,&nbsp;Takeshi Ohshima,&nbsp;Dong-Hee Kim,&nbsp;Sang-Yun Lee","doi":"10.1002/qute.202400173","DOIUrl":null,"url":null,"abstract":"<p>In the rapidly evolving field of quantum information technology, the accurate and efficient classification of single-photon emitters is paramount. Traditional methods, which rely on conducting time-intensive Hanbury Brown-Twiss (HBT) experiments to acquire the 2nd-order correlation function of photon statistics, are not efficient. This study presents a pioneering solution that employs Deep Convolutional Neural Networks (CNNs) to classify single-photon emitters in confocal fluorescence microscope images, thereby bypassing the need for laborious HBT experiments. Focusing on the nitrogen-vacancy centers in diamond, the model is trained using fluorescence images of emitters that have been previously classified through HBT experiments. Applied to unclassified fluorescence images, the model achieves up to 98% accuracy in classification, substantially accelerating the identification process. This advancement not only makes the classification workflow more efficient but also promises wider applicability across various color centers and isolated atomic systems that necessitate imaging for isolation verification. This research signifies a substantial advancement in the application of quantum technologies, leveraging the power of deep learning to optimize the utilization of single-photon emitters.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400173","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly evolving field of quantum information technology, the accurate and efficient classification of single-photon emitters is paramount. Traditional methods, which rely on conducting time-intensive Hanbury Brown-Twiss (HBT) experiments to acquire the 2nd-order correlation function of photon statistics, are not efficient. This study presents a pioneering solution that employs Deep Convolutional Neural Networks (CNNs) to classify single-photon emitters in confocal fluorescence microscope images, thereby bypassing the need for laborious HBT experiments. Focusing on the nitrogen-vacancy centers in diamond, the model is trained using fluorescence images of emitters that have been previously classified through HBT experiments. Applied to unclassified fluorescence images, the model achieves up to 98% accuracy in classification, substantially accelerating the identification process. This advancement not only makes the classification workflow more efficient but also promises wider applicability across various color centers and isolated atomic systems that necessitate imaging for isolation verification. This research signifies a substantial advancement in the application of quantum technologies, leveraging the power of deep learning to optimize the utilization of single-photon emitters.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度卷积神经网络对共聚焦荧光显微镜图像中的单光子发光体进行分类
在飞速发展的量子信息技术领域,准确高效地对单光子发射器进行分类至关重要。传统方法依赖于进行耗时的汉伯里-布朗-特维斯(HBT)实验来获取光子统计的二阶相关函数,这种方法并不高效。本研究提出了一种开创性的解决方案,利用深度卷积神经网络(CNN)对共聚焦荧光显微镜图像中的单光子发射器进行分类,从而绕过了费时费力的 HBT 实验。该模型以金刚石中的氮空位中心为重点,使用先前通过 HBT 实验分类过的发射体的荧光图像进行训练。该模型应用于未分类的荧光图像,分类准确率高达 98%,大大加快了识别过程。这一进步不仅提高了分类工作流程的效率,而且有望在各种色彩中心和需要成像进行隔离验证的孤立原子系统中得到更广泛的应用。这项研究标志着量子技术应用的重大进展,它利用深度学习的力量优化了单光子发射器的利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
期刊最新文献
Front Cover: Laser Beam Induced Charge Collection for Defect Mapping and Spin State Readout in Diamond (Adv. Quantum Technol. 12/2024) Inside Front Cover: Numerical Investigation of a Coupled Micropillar - Waveguide System for Integrated Quantum Photonic Circuits (Adv. Quantum Technol. 12/2024) Back Cover: Purity-Assisted Zero-Noise Extrapolation for Quantum Error Mitigation (Adv. Quantum Technol. 12/2024) Issue Information (Adv. Quantum Technol. 12/2024) Issue Information (Adv. Quantum Technol. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1