Self-Assembled Biconvex Microlens Array Using Chiral Ferroelectric Nematic Liquid Crystals

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-09-30 DOI:10.1002/adom.202401507
Kelum Perera, Arwa Alyami, Alex Adaka, Md Sakhawat H. Himel, Nilanthi Haputhanthrige, Oleg D. Lavrentovich, Elizabeth Mann, Antal Jákli
{"title":"Self-Assembled Biconvex Microlens Array Using Chiral Ferroelectric Nematic Liquid Crystals","authors":"Kelum Perera,&nbsp;Arwa Alyami,&nbsp;Alex Adaka,&nbsp;Md Sakhawat H. Himel,&nbsp;Nilanthi Haputhanthrige,&nbsp;Oleg D. Lavrentovich,&nbsp;Elizabeth Mann,&nbsp;Antal Jákli","doi":"10.1002/adom.202401507","DOIUrl":null,"url":null,"abstract":"<p>Recently, it is shown (Popov et al, Sci. Rep, 2017, 7, 1603) that chiral nematic liquid crystal films adopt biconvex lens shapes underwater, which may explain the formation of insect eyes, but restrict their practical application. Here it is demonstrated that chiral ferroelectric nematic liquid crystals, where the ferroelectric polarization aligns parallel to the air interface, can spontaneously form biconvex lens arrays in air when suspended in submillimeter-size grids. Using Digital Holographic Microscopy, it is shown that the lens has a paraboloid shape and the curvature radius at the center decreases with increasing chiral dopant concentration, i.e., with decreasing helical pitch. Simultaneous measurements of the imaging properties of the lenses show the focal length depends on the pitch, thus offering tunability. The physical mechanism of formation of the self-assembled ferroelectric nematic microlenses is also discussed.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 32","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401507","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401507","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, it is shown (Popov et al, Sci. Rep, 2017, 7, 1603) that chiral nematic liquid crystal films adopt biconvex lens shapes underwater, which may explain the formation of insect eyes, but restrict their practical application. Here it is demonstrated that chiral ferroelectric nematic liquid crystals, where the ferroelectric polarization aligns parallel to the air interface, can spontaneously form biconvex lens arrays in air when suspended in submillimeter-size grids. Using Digital Holographic Microscopy, it is shown that the lens has a paraboloid shape and the curvature radius at the center decreases with increasing chiral dopant concentration, i.e., with decreasing helical pitch. Simultaneous measurements of the imaging properties of the lenses show the focal length depends on the pitch, thus offering tunability. The physical mechanism of formation of the self-assembled ferroelectric nematic microlenses is also discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用手性铁电向列液晶自组装双凸透镜阵列
最近的研究表明(Popov 等人,Sci. Rep, 2017, 7, 1603),手性向列液晶膜在水下呈现双凸透镜形状,这或许可以解释昆虫眼睛的形成,但却限制了其实际应用。本文证明,手性铁电向列液晶的铁电极化平行于空气界面,当悬浮在亚毫米大小的网格中时,可在空气中自发形成双凸透镜阵列。利用数字全息显微镜可以看到,透镜呈抛物面形状,中心的曲率半径随着手性掺杂浓度的增加而减小,即随着螺旋间距的减小而减小。对透镜成像特性的同步测量表明,焦距取决于螺距,从而提供了可调谐性。此外,还讨论了自组装铁电向列微透镜形成的物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Resonantly Enhanced Infrared Up-Conversion in Double-Step Asymmetric Subwavelength Grating Structure (Advanced Optical Materials 32/2024) Masthead: (Advanced Optical Materials 32/2024) Fiber-Integrated van der Waals Quantum Sensor with an Optimal Cavity Interface (Advanced Optical Materials 32/2024) Large-Scale Fabrication of Room-Temperature Phosphorescence Cellulose Filaments with Color-Tunable Afterglows (Advanced Optical Materials 32/2024) Wide-Bandgap RBa3(B3O6)3 (R = Nd, Sm, Tb, Dy, and Er) Single Crystals for Ultraviolet Nonlinear Optics (Advanced Optical Materials 32/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1