Study on the effects of beta cyclodextrin-zinc oxide nanoparticles as heterogeneous catalysts in microbial oil fermentation

IF 1.6 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of The Chinese Chemical Society Pub Date : 2024-09-29 DOI:10.1002/jccs.202400244
Janice Ravi Kumar, Dayanandan Anandan, Viswanathan Kaliyaperumal
{"title":"Study on the effects of beta cyclodextrin-zinc oxide nanoparticles as heterogeneous catalysts in microbial oil fermentation","authors":"Janice Ravi Kumar,&nbsp;Dayanandan Anandan,&nbsp;Viswanathan Kaliyaperumal","doi":"10.1002/jccs.202400244","DOIUrl":null,"url":null,"abstract":"<p>In order to study the catalytic activity of beta cyclodextrin-encapsulated zinc oxide (ZnO) nanoparticles in microbial oil synthesis, rice-washed waste water (RWW) was used as the fermentation medium and <i>streptomyces fradiae</i> as the microbe. The introduction of zinc oxide nanoparticles during fermentation had an impact on output and growth. The biomass percentage was 1.5 times greater and the fatty acid profile was better than in the control samples. The analysis of the induction period (IP) revealed that samples containing zinc oxide nanoparticles had maximum oxidation stability for up to 120 days of storage, along with a considerable reduction in autoxidation. The cetane number and calorific value, however, increased with the addition of ZnO nanoparticles. A new study discovered that the use of ZnO nanoparticles encapsulated in β-CD led to much increased production (63.5 g/L) of microbial oil than the control sample (42.5 g/L). Therefore, it is anticipated that these nanoparticles would find utility in energy-related applications.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"71 11","pages":"1377-1384"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400244","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to study the catalytic activity of beta cyclodextrin-encapsulated zinc oxide (ZnO) nanoparticles in microbial oil synthesis, rice-washed waste water (RWW) was used as the fermentation medium and streptomyces fradiae as the microbe. The introduction of zinc oxide nanoparticles during fermentation had an impact on output and growth. The biomass percentage was 1.5 times greater and the fatty acid profile was better than in the control samples. The analysis of the induction period (IP) revealed that samples containing zinc oxide nanoparticles had maximum oxidation stability for up to 120 days of storage, along with a considerable reduction in autoxidation. The cetane number and calorific value, however, increased with the addition of ZnO nanoparticles. A new study discovered that the use of ZnO nanoparticles encapsulated in β-CD led to much increased production (63.5 g/L) of microbial oil than the control sample (42.5 g/L). Therefore, it is anticipated that these nanoparticles would find utility in energy-related applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究β-环糊精-氧化锌纳米颗粒作为异相催化剂在微生物油脂发酵中的作用
为了研究β-环糊精包封的纳米氧化锌(ZnO)颗粒在微生物油脂合成中的催化活性,我们使用洗米废水(RWW)作为发酵培养基,并使用链霉菌(streptomyces fradiae)作为微生物。发酵过程中引入纳米氧化锌颗粒对产量和生长都有影响。与对照样品相比,生物量百分比提高了 1.5 倍,脂肪酸谱也更好。对诱导期(IP)的分析表明,含有纳米氧化锌颗粒的样品在长达 120 天的储存期间具有最大的氧化稳定性,同时自氧化现象也大大减少。不过,十六烷值和热值随着纳米氧化锌颗粒的添加而增加。一项新的研究发现,使用封装在 β-CD 中的氧化锌纳米颗粒,微生物油的产量(63.5 克/升)比对照样本(42.5 克/升)高出很多。因此,预计这些纳米粒子将在与能源有关的应用中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
11.10%
发文量
216
审稿时长
7.5 months
期刊介绍: The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.
期刊最新文献
Contents and Masthead: Journal of the Chinese Chemical Society 11/2024 Preview: Journal of the Chinese Chemical Society 11/2024 Cover: Journal of the Chinese Chemical Society 11/2024 Preview: Journal of the Chinese Chemical Society 10/2024 Cover: Journal of the Chinese Chemical Society 10/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1