Syntheses of 2,4-Substituted Quinazolines via One-Pot Three-Component Reactions Based on Manganese Dioxide/tert-Butyl Hydrogen Peroxide Co-Oxidation Using Alcohols
{"title":"Syntheses of 2,4-Substituted Quinazolines via One-Pot Three-Component Reactions Based on Manganese Dioxide/tert-Butyl Hydrogen Peroxide Co-Oxidation Using Alcohols","authors":"Yihong Wang, Sheng Huang, Xuehua Chen, Haibo Zhu, Zhanggao Le, Zongbo Xie","doi":"10.1002/jhet.4913","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Quinazolines and their derivatives occur in various natural products and pharmaceuticals, and thus, various methods of synthesizing quinazolines have been explored. They have traditionally been synthesized via two-component reactions, but these strategies often suffer from the unavailability of the starting materials and limited substrate scopes. To overcome these problems, three-component reactions using additional N sources were developed. Aldehydes were initially used in these reactions, but alcohols are greener and less toxic than aldehydes. However, the previously reported methods involving the use of alcohols require the utilization of transition metal catalysts, ultrahigh temperatures, and extended durations. Thus, an efficient, practical method of synthesizing quinazolines using alcohol is desirable. A facile one-pot three-component method of synthesizing quinazolines utilizing alcohols, 2-aminobenzoketones, and ammonium acetate is reported for the first time, using active MnO<sub>2</sub> and <i>tert</i>-butyl hydrogen peroxide (TBHP) as synergistic oxidants. MnO<sub>2</sub> and TBHP play dual roles: First, they oxidize the alcohol to the aldehyde and then facilitate the transformation of the intermediate into the product. During alcohol oxidation, the synergistic effect of MnO<sub>2</sub> and TBHP is particularly evident. The aldehydes generated in situ via alcohol oxidation undergo immediate subsequent reactions, thereby minimizing their volatilization and side reactions, such as oxidation and polymerization.</p>\n </div>","PeriodicalId":194,"journal":{"name":"Journal of Heterocyclic Chemistry","volume":"61 11","pages":"1882-1890"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heterocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jhet.4913","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Quinazolines and their derivatives occur in various natural products and pharmaceuticals, and thus, various methods of synthesizing quinazolines have been explored. They have traditionally been synthesized via two-component reactions, but these strategies often suffer from the unavailability of the starting materials and limited substrate scopes. To overcome these problems, three-component reactions using additional N sources were developed. Aldehydes were initially used in these reactions, but alcohols are greener and less toxic than aldehydes. However, the previously reported methods involving the use of alcohols require the utilization of transition metal catalysts, ultrahigh temperatures, and extended durations. Thus, an efficient, practical method of synthesizing quinazolines using alcohol is desirable. A facile one-pot three-component method of synthesizing quinazolines utilizing alcohols, 2-aminobenzoketones, and ammonium acetate is reported for the first time, using active MnO2 and tert-butyl hydrogen peroxide (TBHP) as synergistic oxidants. MnO2 and TBHP play dual roles: First, they oxidize the alcohol to the aldehyde and then facilitate the transformation of the intermediate into the product. During alcohol oxidation, the synergistic effect of MnO2 and TBHP is particularly evident. The aldehydes generated in situ via alcohol oxidation undergo immediate subsequent reactions, thereby minimizing their volatilization and side reactions, such as oxidation and polymerization.
期刊介绍:
The Journal of Heterocyclic Chemistry is interested in publishing research on all aspects of heterocyclic chemistry, especially development and application of efficient synthetic methodologies and strategies for the synthesis of various heterocyclic compounds. In addition, Journal of Heterocyclic Chemistry promotes research in other areas that contribute to heterocyclic synthesis/application, such as synthesis design, reaction techniques, flow chemistry and continuous processing, multiphase catalysis, green chemistry, catalyst immobilization and recycling.