Sara Zimny, Magdalena Tarnacka, Paulina Maksym, Żaneta Wojnarowska, Marian Paluch, Kamil Kamiński
{"title":"The Influence of Graft Rigidity on the Dynamical Behavior of PMMS-Based Polymer Brushes at Ambient and High Pressures","authors":"Sara Zimny, Magdalena Tarnacka, Paulina Maksym, Żaneta Wojnarowska, Marian Paluch, Kamil Kamiński","doi":"10.1021/acs.macromol.4c01779","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated the molecular dynamics of polymer brushes based on poly(mercaptopropyl)methylsiloxane (PMMS), in which the thiol group was grafted with different homologous flexible acrylates (acrylate-based PMMS copolymers) and more rigid methacrylate (methacrylate-based PMMS copolymers) monomers of varying lengths of alkyl chain under ambient and elevated pressure conditions. It was found that the glass transition temperature, <i>T</i><sub>g</sub>, of PMMS homopolymer is significantly lower compared to the other systems. Moreover, surprisingly, in the methacrylate-grafted copolymers, there are two relaxation processes (α and α′), while in the systems grafted with various acrylates, only a single process is present in the supercooled phase. Complementary rheological investigations indicated that the faster α process comes from the segmental motions, while α′ is not detected in the mechanical response. Further high-pressure experiments showed that there is a superposition between segmental and α′ modes irrespective of applied pressure, <i>p</i>, in methacrylate-based PMMS copolymers. This result suggests that the latter process might be considered as a sub-Rouse mode, or alternatively, it may originate from the dielectric active relaxation of the rigid polar side chain (grafts). Moreover, analysis of the high-pressure data allowed us to estimate the pressure coefficient of the glass transition temperature, d<i>T</i><sub>g</sub>/d<i>p</i>, which was much higher for polymer brushes with respect to the PMMS homopolymer. Interestingly, the values of d<i>T</i><sub>g</sub>/d<i>p</i> for methacrylate-grafted copolymers are slightly higher compared to acrylate-based PMMS copolymers, which may be due to the different flexibility/rigidity of both groups of materials as all examined materials have the same degree of polymerization of homopolymer backbone (<i>N</i><sub>bb</sub> ∼ 12) and side chain (<i>N</i><sub>sc</sub> = 1). However, for both groups of studied systems, d<i>T</i><sub>g</sub>/d<i>p</i> values did not scale with chain length. This unexpected result must be related to the structure of the studied grafted copolymers and the character of grafts, derivatives of acrylates/methacrylates. The data presented here extend our knowledge of the influence of the architecture of different molecules on the dynamics of polymers at ambient and high pressures.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01779","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigated the molecular dynamics of polymer brushes based on poly(mercaptopropyl)methylsiloxane (PMMS), in which the thiol group was grafted with different homologous flexible acrylates (acrylate-based PMMS copolymers) and more rigid methacrylate (methacrylate-based PMMS copolymers) monomers of varying lengths of alkyl chain under ambient and elevated pressure conditions. It was found that the glass transition temperature, Tg, of PMMS homopolymer is significantly lower compared to the other systems. Moreover, surprisingly, in the methacrylate-grafted copolymers, there are two relaxation processes (α and α′), while in the systems grafted with various acrylates, only a single process is present in the supercooled phase. Complementary rheological investigations indicated that the faster α process comes from the segmental motions, while α′ is not detected in the mechanical response. Further high-pressure experiments showed that there is a superposition between segmental and α′ modes irrespective of applied pressure, p, in methacrylate-based PMMS copolymers. This result suggests that the latter process might be considered as a sub-Rouse mode, or alternatively, it may originate from the dielectric active relaxation of the rigid polar side chain (grafts). Moreover, analysis of the high-pressure data allowed us to estimate the pressure coefficient of the glass transition temperature, dTg/dp, which was much higher for polymer brushes with respect to the PMMS homopolymer. Interestingly, the values of dTg/dp for methacrylate-grafted copolymers are slightly higher compared to acrylate-based PMMS copolymers, which may be due to the different flexibility/rigidity of both groups of materials as all examined materials have the same degree of polymerization of homopolymer backbone (Nbb ∼ 12) and side chain (Nsc = 1). However, for both groups of studied systems, dTg/dp values did not scale with chain length. This unexpected result must be related to the structure of the studied grafted copolymers and the character of grafts, derivatives of acrylates/methacrylates. The data presented here extend our knowledge of the influence of the architecture of different molecules on the dynamics of polymers at ambient and high pressures.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.