Human-AI coevolution

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Pub Date : 2024-11-13 DOI:10.1016/j.artint.2024.104244
Dino Pedreschi , Luca Pappalardo , Emanuele Ferragina , Ricardo Baeza-Yates , Albert-László Barabási , Frank Dignum , Virginia Dignum , Tina Eliassi-Rad , Fosca Giannotti , János Kertész , Alistair Knott , Yannis Ioannidis , Paul Lukowicz , Andrea Passarella , Alex Sandy Pentland , John Shawe-Taylor , Alessandro Vespignani
{"title":"Human-AI coevolution","authors":"Dino Pedreschi ,&nbsp;Luca Pappalardo ,&nbsp;Emanuele Ferragina ,&nbsp;Ricardo Baeza-Yates ,&nbsp;Albert-László Barabási ,&nbsp;Frank Dignum ,&nbsp;Virginia Dignum ,&nbsp;Tina Eliassi-Rad ,&nbsp;Fosca Giannotti ,&nbsp;János Kertész ,&nbsp;Alistair Knott ,&nbsp;Yannis Ioannidis ,&nbsp;Paul Lukowicz ,&nbsp;Andrea Passarella ,&nbsp;Alex Sandy Pentland ,&nbsp;John Shawe-Taylor ,&nbsp;Alessandro Vespignani","doi":"10.1016/j.artint.2024.104244","DOIUrl":null,"url":null,"abstract":"<div><div>Human-AI coevolution, defined as a process in which humans and AI algorithms continuously influence each other, increasingly characterises our society, but is understudied in artificial intelligence and complexity science literature. Recommender systems and assistants play a prominent role in human-AI coevolution, as they permeate many facets of daily life and influence human choices through online platforms. The interaction between users and AI results in a potentially endless feedback loop, wherein users' choices generate data to train AI models, which, in turn, shape subsequent user preferences. This human-AI feedback loop has peculiar characteristics compared to traditional human-machine interaction and gives rise to complex and often “unintended” systemic outcomes. This paper introduces human-AI coevolution as the cornerstone for a new field of study at the intersection between AI and complexity science focused on the theoretical, empirical, and mathematical investigation of the human-AI feedback loop. In doing so, we: <em>(i)</em> outline the pros and cons of existing methodologies and highlight shortcomings and potential ways for capturing feedback loop mechanisms; <em>(ii)</em> propose a reflection at the intersection between complexity science, AI and society; <em>(iii)</em> provide real-world examples for different human-AI ecosystems; and <em>(iv)</em> illustrate challenges to the creation of such a field of study, conceptualising them at increasing levels of abstraction, i.e., scientific, legal and socio-political.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"339 ","pages":"Article 104244"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001802","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Human-AI coevolution, defined as a process in which humans and AI algorithms continuously influence each other, increasingly characterises our society, but is understudied in artificial intelligence and complexity science literature. Recommender systems and assistants play a prominent role in human-AI coevolution, as they permeate many facets of daily life and influence human choices through online platforms. The interaction between users and AI results in a potentially endless feedback loop, wherein users' choices generate data to train AI models, which, in turn, shape subsequent user preferences. This human-AI feedback loop has peculiar characteristics compared to traditional human-machine interaction and gives rise to complex and often “unintended” systemic outcomes. This paper introduces human-AI coevolution as the cornerstone for a new field of study at the intersection between AI and complexity science focused on the theoretical, empirical, and mathematical investigation of the human-AI feedback loop. In doing so, we: (i) outline the pros and cons of existing methodologies and highlight shortcomings and potential ways for capturing feedback loop mechanisms; (ii) propose a reflection at the intersection between complexity science, AI and society; (iii) provide real-world examples for different human-AI ecosystems; and (iv) illustrate challenges to the creation of such a field of study, conceptualising them at increasing levels of abstraction, i.e., scientific, legal and socio-political.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类与人工智能的共同进化
人类-人工智能共同进化被定义为人类与人工智能算法不断相互影响的过程,它日益成为我们社会的特征,但在人工智能和复杂性科学文献中却未得到充分研究。推荐系统和助手在人类与人工智能的共同进化中扮演着重要角色,因为它们渗透到日常生活的许多方面,并通过在线平台影响人类的选择。用户与人工智能之间的互动可能会产生无穷无尽的反馈回路,用户的选择会产生数据来训练人工智能模型,而人工智能模型反过来又会塑造用户的后续偏好。与传统的人机交互相比,这种人类与人工智能的反馈循环具有独特的特点,会产生复杂且往往 "非预期 "的系统性结果。本文介绍了人类与人工智能的共同进化,并以此为基石,在人工智能与复杂性科学的交汇点上开辟了一个新的研究领域,专注于对人类与人工智能反馈回路的理论、实证和数学研究。为此,我们(i)概述现有方法论的利弊,并强调捕捉反馈回路机制的不足之处和潜在方法;(ii)提出对复杂性科学、人工智能和社会之间交叉点的反思;(iii)提供不同人类-人工智能生态系统的现实世界实例;以及(iv)说明创建这样一个研究领域所面临的挑战,并从科学、法律和社会政治等抽象层面对这些挑战进行概念化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
期刊最新文献
Lifted action models learning from partial traces Human-AI coevolution Editorial Board Separate but equal: Equality in belief propagation for single-cycle graphs Generative models for grid-based and image-based pathfinding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1