Insights into the role of cyclopropane fatty acid synthase (CfaS) from extreme acidophile in bacterial defense against environmental acid stress.

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Extremophiles Pub Date : 2024-11-16 DOI:10.1007/s00792-024-01368-w
Wenbo Hu, Xingyu Huo, Tengfei Ma, Zhigang Li, Tianyou Yang, Hailin Yang, Shoushuai Feng
{"title":"Insights into the role of cyclopropane fatty acid synthase (CfaS) from extreme acidophile in bacterial defense against environmental acid stress.","authors":"Wenbo Hu, Xingyu Huo, Tengfei Ma, Zhigang Li, Tianyou Yang, Hailin Yang, Shoushuai Feng","doi":"10.1007/s00792-024-01368-w","DOIUrl":null,"url":null,"abstract":"<p><p>The cell membrane remodeling mediated by cyclopropane fatty acid synthase (CfaS) plays a crucial role in microbial physiological processes resisting various environmental stressors, including acid. Herein, we found a relatively high proportion (24.8%-28.3%) of cyclopropane fatty acid (CFA) Cy-19:0 in the cell membrane of a newly isolated extreme acidophile, Acidithiobacillus caldus CCTCC AB 2019256, under extreme acid stress. Overexpression of the CfaS encoding gene cfaS2 in Escherichia coli conferred enhanced acid resistance. GC-MS analysis revealed a 3.52-fold increase in the relative proportion of Cy-19:0 in the cell membrane of the overexpression strain compared to the control. Correspondingly, membrane fluidity, permeability and cell surface hydrophobicity were reduced to varying degrees. Additionally, HPLC analysis indicated that the overexpression strain had 1.54-, 1.42-, 1.85-, 1.20- and 1.05-fold higher levels of intracellular glutamic acid, arginine, aspartic acid, methionine and alanine, respectively, compared to the control. Overall, our findings shed light on the role of CfaS derived from extreme acidophile in bacterial defense against environmental acid stress, potentially facilitating its application in the design and development of industrial microbial chassis cells for organic acid production.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"29 1","pages":"1"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-024-01368-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The cell membrane remodeling mediated by cyclopropane fatty acid synthase (CfaS) plays a crucial role in microbial physiological processes resisting various environmental stressors, including acid. Herein, we found a relatively high proportion (24.8%-28.3%) of cyclopropane fatty acid (CFA) Cy-19:0 in the cell membrane of a newly isolated extreme acidophile, Acidithiobacillus caldus CCTCC AB 2019256, under extreme acid stress. Overexpression of the CfaS encoding gene cfaS2 in Escherichia coli conferred enhanced acid resistance. GC-MS analysis revealed a 3.52-fold increase in the relative proportion of Cy-19:0 in the cell membrane of the overexpression strain compared to the control. Correspondingly, membrane fluidity, permeability and cell surface hydrophobicity were reduced to varying degrees. Additionally, HPLC analysis indicated that the overexpression strain had 1.54-, 1.42-, 1.85-, 1.20- and 1.05-fold higher levels of intracellular glutamic acid, arginine, aspartic acid, methionine and alanine, respectively, compared to the control. Overall, our findings shed light on the role of CfaS derived from extreme acidophile in bacterial defense against environmental acid stress, potentially facilitating its application in the design and development of industrial microbial chassis cells for organic acid production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
洞察极端嗜酸菌环丙烷脂肪酸合成酶(CfaS)在细菌防御环境酸胁迫中的作用。
由环丙烷脂肪酸合成酶(CfaS)介导的细胞膜重塑在微生物抵抗包括酸在内的各种环境压力的生理过程中发挥着至关重要的作用。在此,我们发现在极端酸胁迫下,新分离的极端嗜酸菌--卡尔德酸硫杆菌(Acidithiobacillus caldus CCTCC AB 2019256)细胞膜中的环丙烷脂肪酸(CFA)Cy-19:0比例相对较高(24.8%-28.3%)。在大肠杆菌中过表达 CfaS 编码基因 cfaS2 可增强其耐酸性。GC-MS 分析显示,与对照组相比,过表达菌株细胞膜中 Cy-19:0 的相对比例增加了 3.52 倍。相应地,细胞膜的流动性、渗透性和细胞表面疏水性也有不同程度的降低。此外,高效液相色谱分析表明,与对照组相比,过表达菌株细胞内谷氨酸、精氨酸、天冬氨酸、蛋氨酸和丙氨酸的含量分别高出 1.54 倍、1.42 倍、1.85 倍、1.20 倍和 1.05 倍。总之,我们的研究结果揭示了来自极端嗜酸菌的 CfaS 在细菌防御环境酸胁迫中的作用,有可能促进其在设计和开发用于有机酸生产的工业微生物底盘细胞中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Extremophiles
Extremophiles 生物-生化与分子生物学
CiteScore
6.80
自引率
6.90%
发文量
28
审稿时长
2 months
期刊介绍: Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.
期刊最新文献
Characterization of prokaryotic communities from Italian super-heated fumaroles. Increase of ATP synthesis and amino acids absorption contributes to cold adaptation in Antarctic bacterium Poseidonibacter antarcticus SM1702T. Microbial and mineralogical characterization of the alkaline Chae Son hot spring, Northern Thailand. Insights into the role of cyclopropane fatty acid synthase (CfaS) from extreme acidophile in bacterial defense against environmental acid stress. Genome-based classification of Halobellus rubicundus sp. nov., a novel extremely halophilic archaeon isolated from a Korean solar saltern.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1