Modulating the local electron density at built-in interface iron single sites in Fe-CN/MoO3 heterostructure for enhanced CO2 reduction to CH4 and photo-Fenton reaction

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-11-09 DOI:10.1016/j.jcis.2024.11.038
Muhammad Arif , Ayaz Mahsud , Haoran Xing , Abdul Hannan Zahid , Qian Liang , Muhammad Amjad Majeed , Amjad Ali , Xiazhang Li , Zhansheng Lu , Francis Leonard Deepak , Tahir Muhmood , Yinjuan Chen
{"title":"Modulating the local electron density at built-in interface iron single sites in Fe-CN/MoO3 heterostructure for enhanced CO2 reduction to CH4 and photo-Fenton reaction","authors":"Muhammad Arif ,&nbsp;Ayaz Mahsud ,&nbsp;Haoran Xing ,&nbsp;Abdul Hannan Zahid ,&nbsp;Qian Liang ,&nbsp;Muhammad Amjad Majeed ,&nbsp;Amjad Ali ,&nbsp;Xiazhang Li ,&nbsp;Zhansheng Lu ,&nbsp;Francis Leonard Deepak ,&nbsp;Tahir Muhmood ,&nbsp;Yinjuan Chen","doi":"10.1016/j.jcis.2024.11.038","DOIUrl":null,"url":null,"abstract":"<div><div>The catalytic efficiency of heterogeneous photocatalytic CO<sub>2</sub> reduction and photo-Fenton H<sub>2</sub>O<sub>2</sub> activation<!--> <!-->is<!--> <!-->closely related to the local electron density of reaction center atoms. However, electron-hole recombination from random charge transfer significantly restricts the targeted electron delivery to the active center. Herein, Fe-C<sub>3</sub>N<sub>4</sub>/MoO<sub>3</sub> heterojunction with interfacial coordination of atomically dispersed Fe-N<sub>4</sub> sites with the O interface of MoO<sub>3</sub> was synthesized by simple hydrothermal method. Based on the experimental results and density functional theory calculation (DFT), the heterojunction structure fosters accelerated interfacial electron transfer due to directional interfacial electric field (IEF) between Fe-CN and MoO heterogeneous interfaces, and the interfacial bond between Fe-N<sub>4</sub> sites and O at the built-in interface regulates the local electron density of Fe-N<sub>4</sub> active center. DFT further reveals that the interfacial electron flow and concentrated electron density at Fe-N<sub>4</sub> sites result from the coordination between Fe-N<sub>4</sub> and MoO<sub>3</sub> interfaces. This directs electron flow towards the Fe center, significantly enhancing CO<sub>2</sub> adsorption and H<sub>2</sub>O<sub>2</sub> conversion efficiency. PDOS analysis shows that the <em>d</em><sub>yz</sub> and <em>d</em><sub>z</sub><sup>2</sup> orbitals of the isolated Fe atom in Fe-CN overlap with the <em>p</em><sub>z</sub> orbital of the O atom in MoO<sub>3</sub>, playing a pivotal role in CO<sub>2</sub> adsorption. Consequently, the Fe-CN/MoO<sub>3</sub> heterojunction demonstrated highly efficient photocatalytic CO<sub>2</sub> reduction to CH<sub>4</sub>, coupled with benzyl alcohol oxidation and photo-Fenton tetracycline degradation. These findings offer a promising multifunctional catalyst strategy for the development of energy conversion and environmental remediation.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 1053-1066"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025955","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The catalytic efficiency of heterogeneous photocatalytic CO2 reduction and photo-Fenton H2O2 activation is closely related to the local electron density of reaction center atoms. However, electron-hole recombination from random charge transfer significantly restricts the targeted electron delivery to the active center. Herein, Fe-C3N4/MoO3 heterojunction with interfacial coordination of atomically dispersed Fe-N4 sites with the O interface of MoO3 was synthesized by simple hydrothermal method. Based on the experimental results and density functional theory calculation (DFT), the heterojunction structure fosters accelerated interfacial electron transfer due to directional interfacial electric field (IEF) between Fe-CN and MoO heterogeneous interfaces, and the interfacial bond between Fe-N4 sites and O at the built-in interface regulates the local electron density of Fe-N4 active center. DFT further reveals that the interfacial electron flow and concentrated electron density at Fe-N4 sites result from the coordination between Fe-N4 and MoO3 interfaces. This directs electron flow towards the Fe center, significantly enhancing CO2 adsorption and H2O2 conversion efficiency. PDOS analysis shows that the dyz and dz2 orbitals of the isolated Fe atom in Fe-CN overlap with the pz orbital of the O atom in MoO3, playing a pivotal role in CO2 adsorption. Consequently, the Fe-CN/MoO3 heterojunction demonstrated highly efficient photocatalytic CO2 reduction to CH4, coupled with benzyl alcohol oxidation and photo-Fenton tetracycline degradation. These findings offer a promising multifunctional catalyst strategy for the development of energy conversion and environmental remediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节 Fe-CN/MoO3 异质结构中内置界面铁单位点的局部电子密度,以增强 CO2 还原成 CH4 和光 Fenton 反应。
异相光催化二氧化碳还原和光-芬顿 H2O2 活化的催化效率与反应中心原子的局部电子密度密切相关。然而,随机电荷转移产生的电子-空穴重组极大地限制了电子向活性中心的定向输送。本文采用简单的水热法合成了Fe-C3N4/MoO3异质结,其原子分散的Fe-N4位点与MoO3的O界面相互配位。根据实验结果和密度泛函理论(DFT)计算,异质结结构促进了Fe-CN和MoO异质界面之间的定向界面电场(IEF)所导致的加速界面电子转移,而Fe-N4位点与内置界面上的O之间的界面键调节了Fe-N4活性中心的局部电子密度。DFT 进一步揭示,Fe-N4 位点上的界面电子流和集中的电子密度来自于 Fe-N4 和 MoO3 界面之间的配位。这引导电子流向 Fe 中心,显著提高了 CO2 吸附和 H2O2 转化效率。PDOS 分析表明,Fe-CN 中孤立的 Fe 原子的 dyz 和 dz2 轨道与 MoO3 中 O 原子的 pz 轨道重叠,在吸附 CO2 的过程中起着关键作用。因此,Fe-CN/MoO3 异质结表现出了高效的光催化 CO2 还原成 CH4 的能力,同时还具有苯甲醇氧化和光 Fenton 降解四环素的能力。这些发现为开发能源转换和环境修复提供了一种前景广阔的多功能催化剂策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Efficient urea electrosynthesis from nitrite and CO2 reduction on single W atom catalyst The critical effect of different additive interlayer anions on NiFe-LDH for direct seawater splitting: A theoretical study Outside Front Cover Editorial Board Outside Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1