Modulating the local electron density at built-in interface iron single sites in Fe-CN/MoO3 heterostructure for enhanced CO2 reduction to CH4 and photo-Fenton reaction
Muhammad Arif , Ayaz Mahsud , Haoran Xing , Abdul Hannan Zahid , Qian Liang , Muhammad Amjad Majeed , Amjad Ali , Xiazhang Li , Zhansheng Lu , Francis Leonard Deepak , Tahir Muhmood , Yinjuan Chen
{"title":"Modulating the local electron density at built-in interface iron single sites in Fe-CN/MoO3 heterostructure for enhanced CO2 reduction to CH4 and photo-Fenton reaction","authors":"Muhammad Arif , Ayaz Mahsud , Haoran Xing , Abdul Hannan Zahid , Qian Liang , Muhammad Amjad Majeed , Amjad Ali , Xiazhang Li , Zhansheng Lu , Francis Leonard Deepak , Tahir Muhmood , Yinjuan Chen","doi":"10.1016/j.jcis.2024.11.038","DOIUrl":null,"url":null,"abstract":"<div><div>The catalytic efficiency of heterogeneous photocatalytic CO<sub>2</sub> reduction and photo-Fenton H<sub>2</sub>O<sub>2</sub> activation<!--> <!-->is<!--> <!-->closely related to the local electron density of reaction center atoms. However, electron-hole recombination from random charge transfer significantly restricts the targeted electron delivery to the active center. Herein, Fe-C<sub>3</sub>N<sub>4</sub>/MoO<sub>3</sub> heterojunction with interfacial coordination of atomically dispersed Fe-N<sub>4</sub> sites with the O interface of MoO<sub>3</sub> was synthesized by simple hydrothermal method. Based on the experimental results and density functional theory calculation (DFT), the heterojunction structure fosters accelerated interfacial electron transfer due to directional interfacial electric field (IEF) between Fe-CN and MoO heterogeneous interfaces, and the interfacial bond between Fe-N<sub>4</sub> sites and O at the built-in interface regulates the local electron density of Fe-N<sub>4</sub> active center. DFT further reveals that the interfacial electron flow and concentrated electron density at Fe-N<sub>4</sub> sites result from the coordination between Fe-N<sub>4</sub> and MoO<sub>3</sub> interfaces. This directs electron flow towards the Fe center, significantly enhancing CO<sub>2</sub> adsorption and H<sub>2</sub>O<sub>2</sub> conversion efficiency. PDOS analysis shows that the <em>d</em><sub>yz</sub> and <em>d</em><sub>z</sub><sup>2</sup> orbitals of the isolated Fe atom in Fe-CN overlap with the <em>p</em><sub>z</sub> orbital of the O atom in MoO<sub>3</sub>, playing a pivotal role in CO<sub>2</sub> adsorption. Consequently, the Fe-CN/MoO<sub>3</sub> heterojunction demonstrated highly efficient photocatalytic CO<sub>2</sub> reduction to CH<sub>4</sub>, coupled with benzyl alcohol oxidation and photo-Fenton tetracycline degradation. These findings offer a promising multifunctional catalyst strategy for the development of energy conversion and environmental remediation.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 1053-1066"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025955","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The catalytic efficiency of heterogeneous photocatalytic CO2 reduction and photo-Fenton H2O2 activation is closely related to the local electron density of reaction center atoms. However, electron-hole recombination from random charge transfer significantly restricts the targeted electron delivery to the active center. Herein, Fe-C3N4/MoO3 heterojunction with interfacial coordination of atomically dispersed Fe-N4 sites with the O interface of MoO3 was synthesized by simple hydrothermal method. Based on the experimental results and density functional theory calculation (DFT), the heterojunction structure fosters accelerated interfacial electron transfer due to directional interfacial electric field (IEF) between Fe-CN and MoO heterogeneous interfaces, and the interfacial bond between Fe-N4 sites and O at the built-in interface regulates the local electron density of Fe-N4 active center. DFT further reveals that the interfacial electron flow and concentrated electron density at Fe-N4 sites result from the coordination between Fe-N4 and MoO3 interfaces. This directs electron flow towards the Fe center, significantly enhancing CO2 adsorption and H2O2 conversion efficiency. PDOS analysis shows that the dyz and dz2 orbitals of the isolated Fe atom in Fe-CN overlap with the pz orbital of the O atom in MoO3, playing a pivotal role in CO2 adsorption. Consequently, the Fe-CN/MoO3 heterojunction demonstrated highly efficient photocatalytic CO2 reduction to CH4, coupled with benzyl alcohol oxidation and photo-Fenton tetracycline degradation. These findings offer a promising multifunctional catalyst strategy for the development of energy conversion and environmental remediation.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies