{"title":"PAI-1 influences and curcumin destabilizes MMP-2, MMP-9 and basement membrane proteins during lung injury and fibrosis","authors":"Fathimath Muneesa Moideen , Mohamudha Parveen Rahamathulla , Rakshitha Charavu , Fayez Alghofaili , Mohemmed Sha , Yashodhar P. Bhandary","doi":"10.1016/j.intimp.2024.113587","DOIUrl":null,"url":null,"abstract":"<div><div>One of the characteristic feature of idiopathic pulmonary fibrosis is an imbalanced fibrinolytic system. Plasminogen activator inhibitor-1 (PAI-1), an essential serine protease in the fibrinolytic system, has an anti-fibrotic tendency in some organs and a pro-fibrotic nature in others. Curcumin is reported to regulate the fibrinolytic system. In this study, we sought to determine how curcumin affected alterations in tissue remodelling mediated by PAI-1 in lung fibrosis. For <em>in vitro</em> studies, NIH3T3 fibroblasts were either exposed to TGF-β or overexpressed with PAI-1, and/or treated with curcumin. For <em>in vivo</em> studies, C57BL/6 mice were either instilled with bleomycin, overexpressed with PAI-1, and/or intervened with curcumin. Protein and gene expression studies were performed by western blotting and RT-PCR techniques, respectively. Curcumin intervention, <em>in vitro</em> and <em>in vivo,</em> could inhibit the the expression of collagen, fibronectin, MMP-2, and MMP-9, which was otherwise elevated by TGF-β or bleomycin. In conclusion, curcumin reduces pulmonary fibrosis by suppressing excessive basement membrane protein deposition and, likely, preventing the thickening of the alveolar septum.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"143 ","pages":"Article 113587"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156757692402109X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the characteristic feature of idiopathic pulmonary fibrosis is an imbalanced fibrinolytic system. Plasminogen activator inhibitor-1 (PAI-1), an essential serine protease in the fibrinolytic system, has an anti-fibrotic tendency in some organs and a pro-fibrotic nature in others. Curcumin is reported to regulate the fibrinolytic system. In this study, we sought to determine how curcumin affected alterations in tissue remodelling mediated by PAI-1 in lung fibrosis. For in vitro studies, NIH3T3 fibroblasts were either exposed to TGF-β or overexpressed with PAI-1, and/or treated with curcumin. For in vivo studies, C57BL/6 mice were either instilled with bleomycin, overexpressed with PAI-1, and/or intervened with curcumin. Protein and gene expression studies were performed by western blotting and RT-PCR techniques, respectively. Curcumin intervention, in vitro and in vivo, could inhibit the the expression of collagen, fibronectin, MMP-2, and MMP-9, which was otherwise elevated by TGF-β or bleomycin. In conclusion, curcumin reduces pulmonary fibrosis by suppressing excessive basement membrane protein deposition and, likely, preventing the thickening of the alveolar septum.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.