Integrative Multi-PTM Proteomics Reveals Dynamic Global, Redox, Phosphorylation, and Acetylation Regulation in Cytokine-treated Pancreatic Beta Cells.

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Molecular & Cellular Proteomics Pub Date : 2024-11-14 DOI:10.1016/j.mcpro.2024.100881
Austin Gluth, Xiaolu Li, Marina A Gritsenko, Matthew J Gaffrey, Doo Nam Kim, Priscila M Lalli, Rosalie K Chu, Nicholas J Day, Tyler J Sagendorf, Matthew E Monroe, Song Feng, Tao Liu, Bin Yang, Wei-Jun Qian, Tong Zhang
{"title":"Integrative Multi-PTM Proteomics Reveals Dynamic Global, Redox, Phosphorylation, and Acetylation Regulation in Cytokine-treated Pancreatic Beta Cells.","authors":"Austin Gluth, Xiaolu Li, Marina A Gritsenko, Matthew J Gaffrey, Doo Nam Kim, Priscila M Lalli, Rosalie K Chu, Nicholas J Day, Tyler J Sagendorf, Matthew E Monroe, Song Feng, Tao Liu, Bin Yang, Wei-Jun Qian, Tong Zhang","doi":"10.1016/j.mcpro.2024.100881","DOIUrl":null,"url":null,"abstract":"<p><p>Studying regulation of protein function at a systems level necessitates an understanding of the interplay among diverse post-translational modifications (PTMs). A variety of proteomics sample processing workflows are currently used to study specific PTMs but rarely characterize multiple types of PTMs from the same sample inputs. Method incompatibilities and laborious sample preparation steps complicate large-scale physiological investigations and can lead to variations in results. The single-pot, solid-phase-enhanced sample preparation (SP3) method for sample cleanup is compatible with different lysis buffers and amenable to automation, making it attractive for high-throughput multi-PTM profiling. Herein, we describe an integrative SP3 workflow for multiplexed quantification of protein abundance, cysteine thiol oxidation, phosphorylation, and acetylation. The broad applicability of this approach is demonstrated using cell and tissue samples, and its utility for studying interacting regulatory networks is highlighted in a time-course experiment of cytokine-treated β-cells. We observed a swift response in global regulation of protein abundances consistent with rapid activation of JAK-STAT and NF-κB signaling pathways. Regulators of these pathways as well as proteins involved in their target processes displayed multi-PTM dynamics indicative of a complex cellular response stages: acute, adaptation, and chronic (prolonged stress). PARP14, a negative regulator of JAK-STAT, had multiple co-localized PTMs that may be involved in intraprotein regulatory crosstalk. Our workflow provides a high-throughput platform that can profile multi-PTMomes from the same sample set, which is valuable in unraveling the functional roles of PTMs and their co-regulation.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100881"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100881","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Studying regulation of protein function at a systems level necessitates an understanding of the interplay among diverse post-translational modifications (PTMs). A variety of proteomics sample processing workflows are currently used to study specific PTMs but rarely characterize multiple types of PTMs from the same sample inputs. Method incompatibilities and laborious sample preparation steps complicate large-scale physiological investigations and can lead to variations in results. The single-pot, solid-phase-enhanced sample preparation (SP3) method for sample cleanup is compatible with different lysis buffers and amenable to automation, making it attractive for high-throughput multi-PTM profiling. Herein, we describe an integrative SP3 workflow for multiplexed quantification of protein abundance, cysteine thiol oxidation, phosphorylation, and acetylation. The broad applicability of this approach is demonstrated using cell and tissue samples, and its utility for studying interacting regulatory networks is highlighted in a time-course experiment of cytokine-treated β-cells. We observed a swift response in global regulation of protein abundances consistent with rapid activation of JAK-STAT and NF-κB signaling pathways. Regulators of these pathways as well as proteins involved in their target processes displayed multi-PTM dynamics indicative of a complex cellular response stages: acute, adaptation, and chronic (prolonged stress). PARP14, a negative regulator of JAK-STAT, had multiple co-localized PTMs that may be involved in intraprotein regulatory crosstalk. Our workflow provides a high-throughput platform that can profile multi-PTMomes from the same sample set, which is valuable in unraveling the functional roles of PTMs and their co-regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合多PTM蛋白质组学揭示了细胞因子处理的胰腺β细胞中动态的全局、氧化还原、磷酸化和乙酰化调控。
要在系统水平上研究蛋白质的功能调控,就必须了解各种翻译后修饰(PTM)之间的相互作用。目前有多种蛋白质组学样本处理工作流程可用于研究特定的 PTM,但很少能从相同的样本输入中鉴定多种类型的 PTM。方法的不兼容性和繁琐的样品制备步骤使大规模生理学研究变得复杂,并可能导致结果的差异。用于样品清理的单锅固相增强样品制备(SP3)方法可与不同的裂解缓冲液兼容,并可实现自动化,因此对高通量多PTM分析很有吸引力。在此,我们介绍了一种综合的 SP3 工作流程,可对蛋白质丰度、半胱氨酸硫醇氧化、磷酸化和乙酰化进行多重定量。我们利用细胞和组织样本证明了这种方法的广泛适用性,并在细胞因子处理过的β细胞的时程实验中强调了这种方法在研究相互作用的调控网络方面的实用性。我们观察到蛋白质丰度的全局调控反应迅速,与 JAK-STAT 和 NF-κB 信号通路的快速激活相一致。这些通路的调控因子以及参与其目标过程的蛋白质显示出多PTM动态,表明了复杂的细胞反应阶段:急性、适应和慢性(长期应激)。JAK-STAT的负调控因子PARP14有多个共定位PTM,可能参与了蛋白内调控串扰。我们的工作流程提供了一个高通量平台,可以从同一样本集中分析多个PTMomes,这对于揭示PTM的功能作用及其协同调控非常有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
期刊最新文献
Integrative Multi-PTM Proteomics Reveals Dynamic Global, Redox, Phosphorylation, and Acetylation Regulation in Cytokine-treated Pancreatic Beta Cells. Gradient-Elution Nanoflow Liquid Chromatography without a Binary Pump: Smoothed Step Gradients Enable Reproducible, Sensitive, and Low-Cost Separations for Single-Cell Proteomics. In-depth analysis of miRNA binding sites reveals the complex response of uterine epithelium to miR-26a-5p and miR-125b-5p during early pregnancy. Bridging the Gap from Proteomics Technology to Clinical Application: Highlights from the 68th Benzon Foundation Symposium. Knockdown proteomics reveals USP7 as a regulator of cell-cell adhesion in colorectal cancer via AJUBA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1