Precision management of Fusarium fujikuroi in rice through seed coating with an enhanced nanopesticide using a tannic acid-ZnII formulation.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2024-11-16 DOI:10.1186/s12951-024-02938-y
Qizhen Zhang, Xin Shi, Tuqiang Gao, Yaochun Xing, Haisheng Jin, Jianjun Hao, Xiaofang Liu, Xili Liu, Pengfei Liu
{"title":"Precision management of Fusarium fujikuroi in rice through seed coating with an enhanced nanopesticide using a tannic acid-Zn<sup>II</sup> formulation.","authors":"Qizhen Zhang, Xin Shi, Tuqiang Gao, Yaochun Xing, Haisheng Jin, Jianjun Hao, Xiaofang Liu, Xili Liu, Pengfei Liu","doi":"10.1186/s12951-024-02938-y","DOIUrl":null,"url":null,"abstract":"<p><p>Seed coating with fungicides is a common practice in controlling seed-borne diseases, but conventional methods often result in high toxicity to plants and soil. In this study, a nanoparticle formulation was successfully developed using the metal-organic framework UiO-66 as a carrier of the fungicide ipconazole (IPC), with a tannic acid (TA)-Zn<sup>II</sup> coating serving as a protective layer. The IPC@UiO-66-TA-Zn<sup>II</sup> nanoparticles provided a controlled release, triggered and regulated by environmental factors such as pH and temperature. This formulation efficiently controlled the proliferation of Fusarium fujikuroi spores, with high penetration into both rice roots and fungal mycelia. The product exhibited high antifungal activity, achieving control efficacy rates of 84.09% to 93.10%, low biotoxicity, and promoted rice growth. Compared to the IPC flowable suspension formula, IPC@UiO-66-TA-Zn<sup>II</sup> improved the physicochemical properties and enzymatic activities in soil. Importantly, it showed potential for mitigating damage to beneficial soil bacteria. This study provides a promising approach for managing plant diseases using nanoscale fungicides in seed treatment.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"717"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02938-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Seed coating with fungicides is a common practice in controlling seed-borne diseases, but conventional methods often result in high toxicity to plants and soil. In this study, a nanoparticle formulation was successfully developed using the metal-organic framework UiO-66 as a carrier of the fungicide ipconazole (IPC), with a tannic acid (TA)-ZnII coating serving as a protective layer. The IPC@UiO-66-TA-ZnII nanoparticles provided a controlled release, triggered and regulated by environmental factors such as pH and temperature. This formulation efficiently controlled the proliferation of Fusarium fujikuroi spores, with high penetration into both rice roots and fungal mycelia. The product exhibited high antifungal activity, achieving control efficacy rates of 84.09% to 93.10%, low biotoxicity, and promoted rice growth. Compared to the IPC flowable suspension formula, IPC@UiO-66-TA-ZnII improved the physicochemical properties and enzymatic activities in soil. Importantly, it showed potential for mitigating damage to beneficial soil bacteria. This study provides a promising approach for managing plant diseases using nanoscale fungicides in seed treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过使用鞣酸-锌Ⅱ制剂的增强型纳米杀虫剂进行种子包衣,实现对水稻镰刀菌的精准防治。
用杀菌剂进行种子包衣是控制种传病害的常用方法,但传统方法往往会对植物和土壤造成高毒性。本研究成功开发了一种纳米颗粒配方,以金属有机框架 UiO-66 作为杀菌剂异丙唑(IPC)的载体,以单宁酸(TA)-ZnII 涂层作为保护层。IPC@UiO-66-TA-ZnII纳米颗粒提供了受控释放功能,可由pH值和温度等环境因素触发和调节。这种制剂能有效控制镰刀菌孢子的增殖,对水稻根部和真菌菌丝体的渗透率都很高。该产品具有很高的抗真菌活性,防治效果达 84.09% 至 93.10%,生物毒性低,并能促进水稻生长。与 IPC 流动悬浮剂相比,IPC@UiO-66-TA-ZnII 改善了土壤的理化性质和酶活性。重要的是,它在减轻对土壤有益菌的损害方面表现出了潜力。这项研究为在种子处理中使用纳米级杀菌剂治理植物病害提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Microenvironment-optimized gastrodin-functionalized scaffolds orchestrate asymmetric division of recruited stem cells in endogenous bone regeneration. Endothelial cell-derived exosomes trigger a positive feedback loop in osteogenesis-angiogenesis coupling via up-regulating zinc finger and BTB domain containing 16 in bone marrow mesenchymal stem cell. Physical, biochemical, and biological characterization of olive-derived lipid nanovesicles for drug delivery applications. Fluorescence sensor array for highly sensitive pattern recognition of biothiols in food based on tricolor upconversion luminescence metal-organic frameworks. Exploring the anti-inflammatory effects of curcumin encapsulated within ferritin nanocages: a comprehensive in vivo and in vitro study in Alzheimer's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1