{"title":"Predicting neurodevelopmental disorders using machine learning models and electronic health records - status of the field.","authors":"Shyam Sundar Rajagopalan, Kristiina Tammimies","doi":"10.1186/s11689-024-09579-0","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) is increasingly used to identify patterns that could predict neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). One key source of multilevel data for ML prediction models includes population-based registers and electronic health records. These can contain rich information on individual and familial medical histories and socio-demographics. This review summarizes studies published between 2010-2022 that used ML algorithms to develop predictive models for NDDs using population-based registers and electronic health records. A literature search identified 1191 articles, of which 32 were retained. Of these, 47% developed ASD prediction models and 25% ADHD models. Classical ML methods were used in 82% of studies and in particular tree-based prediction models performed well. The sensitivity of the models was lower than 75% for most studies, while the area under the curve (AUC) was greater than 75%. The most important predictors were patient and familial medical history and sociodemographic factors. Using private in-house datasets makes comparing and validating model generalizability across studies difficult. The ML model development and reporting guidelines were adopted only in a few recently reported studies. More work is needed to harness the power of data for detecting NDDs early.</p>","PeriodicalId":16530,"journal":{"name":"Journal of Neurodevelopmental Disorders","volume":"16 1","pages":"63"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566279/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurodevelopmental Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s11689-024-09579-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) is increasingly used to identify patterns that could predict neurodevelopmental disorders (NDDs), such as autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). One key source of multilevel data for ML prediction models includes population-based registers and electronic health records. These can contain rich information on individual and familial medical histories and socio-demographics. This review summarizes studies published between 2010-2022 that used ML algorithms to develop predictive models for NDDs using population-based registers and electronic health records. A literature search identified 1191 articles, of which 32 were retained. Of these, 47% developed ASD prediction models and 25% ADHD models. Classical ML methods were used in 82% of studies and in particular tree-based prediction models performed well. The sensitivity of the models was lower than 75% for most studies, while the area under the curve (AUC) was greater than 75%. The most important predictors were patient and familial medical history and sociodemographic factors. Using private in-house datasets makes comparing and validating model generalizability across studies difficult. The ML model development and reporting guidelines were adopted only in a few recently reported studies. More work is needed to harness the power of data for detecting NDDs early.
期刊介绍:
Journal of Neurodevelopmental Disorders is an open access journal that integrates current, cutting-edge research across a number of disciplines, including neurobiology, genetics, cognitive neuroscience, psychiatry and psychology. The journal’s primary focus is on the pathogenesis of neurodevelopmental disorders including autism, fragile X syndrome, tuberous sclerosis, Turner Syndrome, 22q Deletion Syndrome, Prader-Willi and Angelman Syndrome, Williams syndrome, lysosomal storage diseases, dyslexia, specific language impairment and fetal alcohol syndrome. With the discovery of specific genes underlying neurodevelopmental syndromes, the emergence of powerful tools for studying neural circuitry, and the development of new approaches for exploring molecular mechanisms, interdisciplinary research on the pathogenesis of neurodevelopmental disorders is now increasingly common. Journal of Neurodevelopmental Disorders provides a unique venue for researchers interested in comparing and contrasting mechanisms and characteristics related to the pathogenesis of the full range of neurodevelopmental disorders, sharpening our understanding of the etiology and relevant phenotypes of each condition.