Le Chen, Baixin Chen, Yanyuan Dai, Qimeng Sun, Jun Wu, Dandan Zheng, Alexandros N Vgontzas, Xiangdong Tang, Yun Li
{"title":"The association of objective daytime sleepiness with impaired glucose metabolism in patients with obstructive sleep apnea: a multi-omics study.","authors":"Le Chen, Baixin Chen, Yanyuan Dai, Qimeng Sun, Jun Wu, Dandan Zheng, Alexandros N Vgontzas, Xiangdong Tang, Yun Li","doi":"10.1093/sleep/zsae240","DOIUrl":null,"url":null,"abstract":"<p><strong>Study objectives: </strong>To examine the joint effect of obstructive sleep apnea (OSA) and objective excessive daytime sleepiness (EDS) on glucose metabolism and the underlying mechanisms.</p><p><strong>Methods: </strong>We included 127 patients with OSA. The multiple sleep latency test (MSLT) and Epworth sleepiness scale (ESS) were used to assess objective and subjective EDS, respectively. Disordered glucose metabolism was defined as either a physician diagnosis or having fasting blood glucose levels ≥ 5.6 mmol/L. Values of fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) higher than the median values of our sample were defined as high fasting insulin and insulin resistance. Serum metabolomics and fecal microbiota were used to explore underlying mechanisms.</p><p><strong>Results: </strong>Lower MSLT values were associated with higher levels of fasting blood glucose, fasting insulin, and HOMA-IR. Furthermore, objective EDS was associated with increased odds of disordered glucose metabolism, elevated fasting insulin, and insulin resistance. Dysregulation of serum valine degradation and dysbiosis of fecal Bacteroides thetaiotaomicron were associated with impaired glucose metabolism in OSA with objective EDS. No association between subjective EDS and impaired glucose metabolism was observed.</p><p><strong>Conclusion: </strong>OSA with objective, but not subjective, EDS is associated with an increased risk of disordered glucose metabolism and insulin resistance. Dysregulation of valine degradation and dysbiosis of Bacteroides thetaiotaomicron appear to link objective EDS and disordered glucose metabolism in OSA.</p>","PeriodicalId":22018,"journal":{"name":"Sleep","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsae240","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Study objectives: To examine the joint effect of obstructive sleep apnea (OSA) and objective excessive daytime sleepiness (EDS) on glucose metabolism and the underlying mechanisms.
Methods: We included 127 patients with OSA. The multiple sleep latency test (MSLT) and Epworth sleepiness scale (ESS) were used to assess objective and subjective EDS, respectively. Disordered glucose metabolism was defined as either a physician diagnosis or having fasting blood glucose levels ≥ 5.6 mmol/L. Values of fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) higher than the median values of our sample were defined as high fasting insulin and insulin resistance. Serum metabolomics and fecal microbiota were used to explore underlying mechanisms.
Results: Lower MSLT values were associated with higher levels of fasting blood glucose, fasting insulin, and HOMA-IR. Furthermore, objective EDS was associated with increased odds of disordered glucose metabolism, elevated fasting insulin, and insulin resistance. Dysregulation of serum valine degradation and dysbiosis of fecal Bacteroides thetaiotaomicron were associated with impaired glucose metabolism in OSA with objective EDS. No association between subjective EDS and impaired glucose metabolism was observed.
Conclusion: OSA with objective, but not subjective, EDS is associated with an increased risk of disordered glucose metabolism and insulin resistance. Dysregulation of valine degradation and dysbiosis of Bacteroides thetaiotaomicron appear to link objective EDS and disordered glucose metabolism in OSA.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.