Dopamine-induced relaxation of spike synchrony diversifies burst patterns in cultured hippocampal networks

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2024-11-07 DOI:10.1016/j.neunet.2024.106888
Huu Hoang , Nobuyoshi Matsumoto , Miyuki Miyano , Yuji Ikegaya , Aurelio Cortese
{"title":"Dopamine-induced relaxation of spike synchrony diversifies burst patterns in cultured hippocampal networks","authors":"Huu Hoang ,&nbsp;Nobuyoshi Matsumoto ,&nbsp;Miyuki Miyano ,&nbsp;Yuji Ikegaya ,&nbsp;Aurelio Cortese","doi":"10.1016/j.neunet.2024.106888","DOIUrl":null,"url":null,"abstract":"<div><div>The intricate interplay of neurotransmitters orchestrates a symphony of neural activity in the hippocampus, with dopamine emerging as a key conductor in this complex ensemble. Despite numerous studies uncovering the cellular mechanisms of dopamine, its influence on hippocampal neural networks remains elusive. Combining in vitro electrophysiological recordings of rat embryonic hippocampal neurons, pharmacological interventions, and computational analyses of spike trains, we found that dopamine induces a relaxation in network synchrony. This relaxation expands the repertoire of burst dynamics within these hippocampal networks, a phenomenon notably absent under the administration of dopamine antagonists. Our study provides a thorough understanding of how dopamine signaling influences the formation of functional networks among hippocampal neurons.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106888"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024008177","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The intricate interplay of neurotransmitters orchestrates a symphony of neural activity in the hippocampus, with dopamine emerging as a key conductor in this complex ensemble. Despite numerous studies uncovering the cellular mechanisms of dopamine, its influence on hippocampal neural networks remains elusive. Combining in vitro electrophysiological recordings of rat embryonic hippocampal neurons, pharmacological interventions, and computational analyses of spike trains, we found that dopamine induces a relaxation in network synchrony. This relaxation expands the repertoire of burst dynamics within these hippocampal networks, a phenomenon notably absent under the administration of dopamine antagonists. Our study provides a thorough understanding of how dopamine signaling influences the formation of functional networks among hippocampal neurons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多巴胺诱导的尖峰同步松弛使培养海马网络中的突发性模式多样化
神经递质之间错综复杂的相互作用为海马体的神经活动谱写了一曲交响乐,而多巴胺则是这一复杂合奏中的关键指挥。尽管有大量研究揭示了多巴胺的细胞机制,但它对海马神经网络的影响仍然难以捉摸。结合对大鼠胚胎海马神经元的体外电生理记录、药理学干预以及对尖峰列车的计算分析,我们发现多巴胺会诱导网络同步性的松弛。这种松弛扩大了这些海马网络中突发性动态的范围,而这种现象在服用多巴胺拮抗剂后明显消失。我们的研究让我们对多巴胺信号如何影响海马神经元间功能网络的形成有了一个全面的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition. Spectral integrated neural networks (SINNs) for solving forward and inverse dynamic problems. Corrigendum to "Multi-view Graph Pooling with Coarsened Graph Disentanglement" [Neural Networks 174 (2024) 1-10/106221]. Multi-compartment neuron and population encoding powered spiking neural network for deep distributional reinforcement learning. Multiscroll hopfield neural network with extreme multistability and its application in video encryption for IIoT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1