{"title":"Enhancing Robustness of Speech Watermarking Using a Transformer-Based Framework Exploiting Acoustic Features","authors":"Chuxuan Tong;Iynkaran Natgunanathan;Yong Xiang;Jianhua Li;Tianrui Zong;Xi Zheng;Longxiang Gao","doi":"10.1109/TASLP.2024.3486206","DOIUrl":null,"url":null,"abstract":"Digital watermarking serves as an effective approach for safeguarding speech signal copyrights, achieved by the incorporation of ownership information into the original signal and its subsequent extraction from the watermarked signal. While traditional watermarking methods can embed and extract watermarks successfully when the watermarked signals are not exposed to severe alterations, these methods cannot withstand attacks such as de-synchronization. In this work, we introduce a novel transformer-based framework designed to enhance the imperceptibility and robustness of speech watermarking. This framework incorporates encoders and decoders built on multi-scale transformer blocks to effectively capture local and long-range features from inputs, such as acoustic features extracted by Short-Time Fourier Transformation (STFT). Further, a deep neural networks (DNNs) based generator, notably the Transformer architecture, is employed to adaptively embed imperceptible watermarks. These perturbations serve as a step for simulating noise, thereby bolstering the watermark robustness during the training phase. Experimental results show the superiority of our proposed framework in terms of watermark imperceptibility and robustness against various watermark attacks. When compared to the currently available related techniques, the framework exhibits an eightfold increase in embedding rate. Further, it also presents superior practicality with scalability and reduced inference time of DNN models.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"4822-4837"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10748346/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Digital watermarking serves as an effective approach for safeguarding speech signal copyrights, achieved by the incorporation of ownership information into the original signal and its subsequent extraction from the watermarked signal. While traditional watermarking methods can embed and extract watermarks successfully when the watermarked signals are not exposed to severe alterations, these methods cannot withstand attacks such as de-synchronization. In this work, we introduce a novel transformer-based framework designed to enhance the imperceptibility and robustness of speech watermarking. This framework incorporates encoders and decoders built on multi-scale transformer blocks to effectively capture local and long-range features from inputs, such as acoustic features extracted by Short-Time Fourier Transformation (STFT). Further, a deep neural networks (DNNs) based generator, notably the Transformer architecture, is employed to adaptively embed imperceptible watermarks. These perturbations serve as a step for simulating noise, thereby bolstering the watermark robustness during the training phase. Experimental results show the superiority of our proposed framework in terms of watermark imperceptibility and robustness against various watermark attacks. When compared to the currently available related techniques, the framework exhibits an eightfold increase in embedding rate. Further, it also presents superior practicality with scalability and reduced inference time of DNN models.
期刊介绍:
The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.