Diffusion bonding of steels with a homogeneous microstructure throughout the joint

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science Pub Date : 2024-11-04 DOI:10.1007/s10853-024-10343-x
Nicolás Di Luozzo, Michael Schulz, Michel Boudard, Silvina Limandri, Gastón Garbarino, Marcelo Fontana
{"title":"Diffusion bonding of steels with a homogeneous microstructure throughout the joint","authors":"Nicolás Di Luozzo,&nbsp;Michael Schulz,&nbsp;Michel Boudard,&nbsp;Silvina Limandri,&nbsp;Gastón Garbarino,&nbsp;Marcelo Fontana","doi":"10.1007/s10853-024-10343-x","DOIUrl":null,"url":null,"abstract":"<div><p>Cold-finished carbon steel bars were bonded by means of the transient liquid phase bonding (TLPB) process using amorphous metallic foils of the eutectic Fe-B composition as filler material. A homogeneous microstructure throughout the joint was obtained. Traces of borides in the middle of the joint were the only distinguishable microconstituent from the base metal due to the TLPB process. The B concentration profile across the joint was measured by neutron radiography and was found to be composed of a central sharp peak with a maximum concentration of 15.9 ppm B superimposed over a broad peak (base width of ≈ 5 mm) with a maximum concentration of 13.3 ppm B. Owing to this low range of B concentrations, boride precipitation was almost suppressed, and only a scarce number of borides were observed at the joint. The resulting boride structure was identified as Fe<sub>23</sub>B<sub>6</sub> by synchrotron microfocused X-ray diffraction, and its stabilization at room temperature is discussed. The bonded samples were subjected to a bend test, with a bending angle of 180°, and no cracks were observed. In tension tests, the bonded samples attained an ultimate tensile strength (UTS) of 434 MPa, an elongation of 32.3% and a reduction area <i>q</i> of 51.2%—78.6%, 165.6% and 75.4%, respectively, of the base metal. The fracture of the bonded samples occurred at the joint. It was determined that the decrease in UTS compared with that of the base metal was due to the recovery, recrystallization and grain growth that occurred during the TLPB thermal cycle. In addition, from fracture surface observation, it was found that the decrease in <i>q</i> in bonded samples was caused by the presence of traces of borides at the joint, which were the result of the liquid phase that solidified during the cooling stage.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 43","pages":"20400 - 20417"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10343-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cold-finished carbon steel bars were bonded by means of the transient liquid phase bonding (TLPB) process using amorphous metallic foils of the eutectic Fe-B composition as filler material. A homogeneous microstructure throughout the joint was obtained. Traces of borides in the middle of the joint were the only distinguishable microconstituent from the base metal due to the TLPB process. The B concentration profile across the joint was measured by neutron radiography and was found to be composed of a central sharp peak with a maximum concentration of 15.9 ppm B superimposed over a broad peak (base width of ≈ 5 mm) with a maximum concentration of 13.3 ppm B. Owing to this low range of B concentrations, boride precipitation was almost suppressed, and only a scarce number of borides were observed at the joint. The resulting boride structure was identified as Fe23B6 by synchrotron microfocused X-ray diffraction, and its stabilization at room temperature is discussed. The bonded samples were subjected to a bend test, with a bending angle of 180°, and no cracks were observed. In tension tests, the bonded samples attained an ultimate tensile strength (UTS) of 434 MPa, an elongation of 32.3% and a reduction area q of 51.2%—78.6%, 165.6% and 75.4%, respectively, of the base metal. The fracture of the bonded samples occurred at the joint. It was determined that the decrease in UTS compared with that of the base metal was due to the recovery, recrystallization and grain growth that occurred during the TLPB thermal cycle. In addition, from fracture surface observation, it was found that the decrease in q in bonded samples was caused by the presence of traces of borides at the joint, which were the result of the liquid phase that solidified during the cooling stage.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢材的扩散粘接,整个接头的微观结构均匀一致
通过瞬态液相粘合(TLPB)工艺,使用共晶铁-乙成分的无定形金属箔作为填充材料,粘合了冷加工碳钢棒。整个接合处获得了均匀的微观结构。由于采用了 TLPB 工艺,接头中部的微量硼化物是唯一可与基体金属区分开来的微观成分。通过中子射线照相法测量了整个接合处的硼浓度曲线,发现它是由一个中心尖峰(最大浓度为 15.9 ppm B)与一个宽峰(基宽 ≈ 5 mm)(最大浓度为 13.3 ppm B)叠加组成的。通过同步辐射微聚焦 X 射线衍射,确定了所产生的硼化物结构为 Fe23B6,并对其在室温下的稳定性进行了讨论。对粘合样品进行了弯曲试验,弯曲角度为 180°,未观察到裂纹。在拉伸试验中,粘合样品的极限拉伸强度(UTS)为 434 兆帕(MPa),伸长率为 32.3%,减少面积 q 分别为基体金属的 51.2%-78.6%、165.6% 和 75.4%。粘合样品的断裂发生在连接处。据测定,与基体金属相比,UTS 下降的原因是 TLPB 热循环过程中发生的恢复、再结晶和晶粒生长。此外,通过断裂表面观察发现,粘合样品的 q 值降低是由于接合处存在微量硼化物,这是冷却阶段液相凝固的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
期刊最新文献
The influence of entanglement degree controlled by complex shear field on the performance of long-chain branched polypropylene Investigation on the microstructure and mechanical properties of 5356 aluminum alloy wire in continuous casting direct rolling process Crystallization behavior and thermal properties of octa-phenyl-substituted silsesquioxane-modified polylactide (PLA) Integrating dye-sensitized solar cells and supercapacitors: portable powerpacks for future energy applications High-security organic PVDF-coated SiO2 aerogel lithium battery separator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1