{"title":"A review of recent advances in sustainable preparation of high-performing activated carbon for dehumidification technology","authors":"Chairunnisa, Hao Yu, Sagar Saren, Frantisek Miksik, Pellegrino Conte, Takahiko Miyazaki, Kyaw Thu","doi":"10.1007/s10853-024-10265-8","DOIUrl":null,"url":null,"abstract":"<div><p>Air-conditioning (A/C) systems in tropical regions are characterized by significant energy consumption for latent load handling. Decoupling of the latent load from the A/C units can be achieved using a dedicated dehumidification system while the A/C systems handle only the sensible heat at high efficiencies. Desiccants are widely used in industry, and adsorbent materials that exhibit a unique isotherm shape, i.e. \"S shape\", have been developed extensively. Recently, activated carbons (ACs) have been discussed as effective adsorbents for dehumidification applications. Although pristine ACs are considered to be hydrophobic materials, certain surface treatments initiate surface phenomena that promote water vapour uptake at relative pressures above 0.4 due to microdroplet aggregation. This work reviews and reports the latest developments of sustainable activated carbons for dehumidification using a multiscale approach spanning from the sustainable precursor selection, “green” activation processes and surface functionalization, adsorption thermodynamics, and system-level developments. With the focus on sustainability, we demonstrate that water adsorption and viable adsorption range are gradually improving with the progressing research, and they are reaching operational values required for practical use. The unique adsorption process of water onto ACs is further explained in detail using solvation theory on the microdomains created by the hydrophilic functional groups while providing clarification of thermodynamic properties adopting the specificities of water/activated carbon adsorption pair. The predicted performance of a desiccant dehumidification system utilizing activated carbon is evaluated using the local weather conditions of numerous major cities worldwide. The highest dehumidification performances of activated carbon, as indicated by the unified SDP (specific dehumidification power) value, are reached particularly in cities that suffer from high humidity and temperature the most proving the viability of this cheap and sustainable material.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 43","pages":"20121 - 20156"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10265-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Air-conditioning (A/C) systems in tropical regions are characterized by significant energy consumption for latent load handling. Decoupling of the latent load from the A/C units can be achieved using a dedicated dehumidification system while the A/C systems handle only the sensible heat at high efficiencies. Desiccants are widely used in industry, and adsorbent materials that exhibit a unique isotherm shape, i.e. "S shape", have been developed extensively. Recently, activated carbons (ACs) have been discussed as effective adsorbents for dehumidification applications. Although pristine ACs are considered to be hydrophobic materials, certain surface treatments initiate surface phenomena that promote water vapour uptake at relative pressures above 0.4 due to microdroplet aggregation. This work reviews and reports the latest developments of sustainable activated carbons for dehumidification using a multiscale approach spanning from the sustainable precursor selection, “green” activation processes and surface functionalization, adsorption thermodynamics, and system-level developments. With the focus on sustainability, we demonstrate that water adsorption and viable adsorption range are gradually improving with the progressing research, and they are reaching operational values required for practical use. The unique adsorption process of water onto ACs is further explained in detail using solvation theory on the microdomains created by the hydrophilic functional groups while providing clarification of thermodynamic properties adopting the specificities of water/activated carbon adsorption pair. The predicted performance of a desiccant dehumidification system utilizing activated carbon is evaluated using the local weather conditions of numerous major cities worldwide. The highest dehumidification performances of activated carbon, as indicated by the unified SDP (specific dehumidification power) value, are reached particularly in cities that suffer from high humidity and temperature the most proving the viability of this cheap and sustainable material.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.