A robust self-training algorithm based on relative node graph

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2024-11-16 DOI:10.1007/s10489-024-06062-0
Jikui Wang, Huiyu Duan, Cuihong Zhang, Feiping Nie
{"title":"A robust self-training algorithm based on relative node graph","authors":"Jikui Wang,&nbsp;Huiyu Duan,&nbsp;Cuihong Zhang,&nbsp;Feiping Nie","doi":"10.1007/s10489-024-06062-0","DOIUrl":null,"url":null,"abstract":"<div><p>Self-training algorithm is a well-known framework of semi-supervised learning. How to select high-confidence samples is the key step for self-training algorithm. If high-confidence examples with incorrect labels are employed to train the classifier, the error will get worse during iterations. To improve the quality of high-confidence samples, a novel data editing technique termed Relative Node Graph Editing (RNGE) is put forward. Say concretely, mass estimation is used to calculate the density and peak of each sample to build a prototype tree to reveal the underlying spatial structure of the data. Then, we define the Relative Node Graph (RNG) for each sample. Finally, the mislabeled samples in the candidate high-confidence sample set are identified by hypothesis test based on RNG. Combined above, we propose a Robust Self-training Algorithm based on Relative Node Graph (STRNG), which uses RNGE to identify mislabeled samples and edit them. The experimental results show that the proposed algorithm can improve the performance of the self-training algorithm.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06062-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Self-training algorithm is a well-known framework of semi-supervised learning. How to select high-confidence samples is the key step for self-training algorithm. If high-confidence examples with incorrect labels are employed to train the classifier, the error will get worse during iterations. To improve the quality of high-confidence samples, a novel data editing technique termed Relative Node Graph Editing (RNGE) is put forward. Say concretely, mass estimation is used to calculate the density and peak of each sample to build a prototype tree to reveal the underlying spatial structure of the data. Then, we define the Relative Node Graph (RNG) for each sample. Finally, the mislabeled samples in the candidate high-confidence sample set are identified by hypothesis test based on RNG. Combined above, we propose a Robust Self-training Algorithm based on Relative Node Graph (STRNG), which uses RNGE to identify mislabeled samples and edit them. The experimental results show that the proposed algorithm can improve the performance of the self-training algorithm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相对节点图的稳健自训练算法
自训练算法是一种著名的半监督学习框架。如何选择高置信度样本是自训练算法的关键步骤。如果采用标签不正确的高置信度样本来训练分类器,误差会在迭代过程中越来越大。为了提高高置信度样本的质量,我们提出了一种新的数据编辑技术,即相对节点图编辑(RNGE)。具体来说,通过质量估计来计算每个样本的密度和峰值,从而建立一棵原型树,揭示数据的潜在空间结构。然后,我们为每个样本定义相对节点图(RNG)。最后,通过基于 RNG 的假设检验来识别候选高置信度样本集中的错误标记样本。综合上述方法,我们提出了一种基于相对节点图的鲁棒自训练算法(STRNG),该算法利用相对节点图来识别误标注样本并对其进行编辑。实验结果表明,所提出的算法可以提高自训练算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
A prototype evolution network for relation extraction Highway spillage detection using an improved STPM anomaly detection network from a surveillance perspective Semantic-aware matrix factorization hashing with intra- and inter-modality fusion for image-text retrieval HG-search: multi-stage search for heterogeneous graph neural networks Channel enhanced cross-modality relation network for visible-infrared person re-identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1