Cost-effectiveness analysis of mHealth applications for depression in Germany using a Markov cohort simulation

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-11-17 DOI:10.1038/s41746-024-01324-0
Bettina Freitag, Marie Uncovska, Sven Meister, Christian Prinz, Leonard Fehring
{"title":"Cost-effectiveness analysis of mHealth applications for depression in Germany using a Markov cohort simulation","authors":"Bettina Freitag, Marie Uncovska, Sven Meister, Christian Prinz, Leonard Fehring","doi":"10.1038/s41746-024-01324-0","DOIUrl":null,"url":null,"abstract":"Regulated mobile health applications are called digital health applications (“DiGA”) in Germany. To qualify for reimbursement by statutory health insurance companies, DiGA have to prove positive care effects in scientific studies. Since the empirical exploration of DiGA cost-effectiveness remains largely uncharted, this study pioneers the methodology of cohort-based state-transition Markov models to evaluate DiGA for depression. As health states, we define mild, moderate, severe depression, remission and death. Comparing a future scenario where 50% of patients receive supplementary DiGA access with the current standard of care reveals a gain of 0.02 quality-adjusted life years (QALYs) per patient, which comes at additional direct costs of ~1536 EUR per patient over a five-year timeframe. Influencing factors determining DiGA cost-effectiveness are the DiGA cost structure and individual DiGA effectiveness. Under Germany’s existing cost structure, DiGA for depression are yet to demonstrate the ability to generate overall savings in healthcare expenditures.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-13"},"PeriodicalIF":12.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01324-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01324-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Regulated mobile health applications are called digital health applications (“DiGA”) in Germany. To qualify for reimbursement by statutory health insurance companies, DiGA have to prove positive care effects in scientific studies. Since the empirical exploration of DiGA cost-effectiveness remains largely uncharted, this study pioneers the methodology of cohort-based state-transition Markov models to evaluate DiGA for depression. As health states, we define mild, moderate, severe depression, remission and death. Comparing a future scenario where 50% of patients receive supplementary DiGA access with the current standard of care reveals a gain of 0.02 quality-adjusted life years (QALYs) per patient, which comes at additional direct costs of ~1536 EUR per patient over a five-year timeframe. Influencing factors determining DiGA cost-effectiveness are the DiGA cost structure and individual DiGA effectiveness. Under Germany’s existing cost structure, DiGA for depression are yet to demonstrate the ability to generate overall savings in healthcare expenditures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用马尔可夫队列模拟对德国抑郁症移动医疗应用的成本效益进行分析
在德国,受监管的移动医疗应用程序被称为数字医疗应用程序("DiGA")。要获得法定医疗保险公司的报销资格,DiGA 必须在科学研究中证明其具有积极的医疗效果。由于对 DiGA 成本效益的实证探索在很大程度上仍是未知数,本研究开创性地采用了基于队列的状态转换马尔可夫模型的方法来评估 DiGA 对抑郁症的治疗效果。我们将轻度、中度、重度抑郁、缓解和死亡定义为健康状态。将 50% 的患者接受 DiGA 辅助治疗的未来情景与当前的标准治疗进行比较后发现,每位患者可获得 0.02 个质量调整生命年(QALYs)的收益,而在五年时间内,每位患者的额外直接成本约为 1536 欧元。决定 DiGA 成本效益的影响因素是 DiGA 成本结构和 DiGA 的个体有效性。在德国现有的成本结构下,治疗抑郁症的 DiGA 还没有证明有能力节省总体医疗开支。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Learning from the EHR to implement AI in healthcare The quality and safety of using generative AI to produce patient-centred discharge instructions An iterative approach for estimating domain-specific cognitive abilities from large scale online cognitive data Interpretable machine learning model for digital lung cancer prescreening in Chinese populations with missing data Developing a Canadian artificial intelligence medical curriculum using a Delphi study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1