Emerging Frontiers in Conformational Exploration of Disordered Proteins: Integrating Autoencoder and Molecular Simulations.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2024-11-18 DOI:10.1021/acschemneuro.4c00670
Jiyuan Zeng, Zhongyuan Yang, Yiming Tang, Guanghong Wei
{"title":"Emerging Frontiers in Conformational Exploration of Disordered Proteins: Integrating Autoencoder and Molecular Simulations.","authors":"Jiyuan Zeng, Zhongyuan Yang, Yiming Tang, Guanghong Wei","doi":"10.1021/acschemneuro.4c00670","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsically disordered proteins (IDPs) are closely associated with a number of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Due to the highly dynamic nature of IDPs, their structural determination and conformational exploration pose significant challenges for both experimental and computational research. Recently, the integration of machine learning with molecular dynamics (MD) simulations has emerged as a promising methodology for efficiently exploring the conformation spaces of IDPs. In this viewpoint, we briefly review recently developed autoencoder-based models designed to enhance the conformational exploration of IDPs through embedding and latent sampling. We highlight the capability of autoencoders in expanding the conformations sampled by MD simulations and discuss their limitations due to the non-Gaussian latent space distribution and the limited conformational diversity of training conformations. Potential strategies to overcome these limitations are also discussed.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00670","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsically disordered proteins (IDPs) are closely associated with a number of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Due to the highly dynamic nature of IDPs, their structural determination and conformational exploration pose significant challenges for both experimental and computational research. Recently, the integration of machine learning with molecular dynamics (MD) simulations has emerged as a promising methodology for efficiently exploring the conformation spaces of IDPs. In this viewpoint, we briefly review recently developed autoencoder-based models designed to enhance the conformational exploration of IDPs through embedding and latent sampling. We highlight the capability of autoencoders in expanding the conformations sampled by MD simulations and discuss their limitations due to the non-Gaussian latent space distribution and the limited conformational diversity of training conformations. Potential strategies to overcome these limitations are also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无序蛋白质构象探索的新前沿:自动编码器与分子模拟的整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. Emerging Frontiers in Conformational Exploration of Disordered Proteins: Integrating Autoencoder and Molecular Simulations. Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain. Discovery of the First-in-Class Dual TSPO/Carbonic Anhydrase Modulators with Promising Neurotrophic Activity. Efficient multi-objective Bayesian optimization of gas–liquid photochemical reactions using an automated flow platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1